name : stringName of SQL table.con : sqlalchemy.engine.Engine or sqlite3.ConnectionUsing SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects.schema : string, optionalSpecify the schema (if database flavor supports this)...
conn.commit()exceptExceptionase: error =" [-]%d fail to write to SQL"% index cursor.rollback() log_error('error.log',error)else:print(" [+]%d succeed to write to SQL"% index) cursor.close() conn.close()defmain(): num =238143#数据库查询拿到的总数p =Noneforindexinrange(1,num+...
1 def Write_to_MySQL(InitMySQL,tabel_name, CurrentTime, Electric_uA, Distance, WaringStatus): 2 # 创建游标 3 cursor = InitMySQL.cursor() 4 # #创建sql 5 # w_table_name = 'warning' + day_time 6 sql = 'insert into '+ tabel_name+ ' values (%s, %s, %s, %s)' 7 print(sql) ...
read_sql_table(table_name, con[, schema, …]) # 将 SQL 查询读入 DataFrame read_sql_query(sql, con[, index_col, …]) # 将 SQL 数据表或查询读入 DataFrame read_sql(sql, con[, index_col, …]) # 将存储在 DataFrame 中的记录写入 SQL 数据库 DataFrame.to_sql(name, con[, schema, ...
背景:工作中遇到的问题,实现Python脚本自动读取excel文件并写入数据库,操作时候发现,系统下载的Excel文件并不是一直固定的,基本上过段时间就会调整次,原始to_sql方法只能整体写入,当字段无法对齐columns时,会造成数据的混乱,由于本人自学Python,也经常在csdn上找答案,这个问题找了两天,并未找到类似解决办法,基本上都是...
importmultiprocessing n_process = multiprocessing.cpu_count()witho.execute_sql('select * from dual').open_reader(tunnel=True)asreader:# n_process 指定成机器核数pd_df = reader.to_pandas(n_process=n_process) 设置alias 在运行SQL时,如果某个UDF引用的资源是动态变化的,您可以alias旧的资源名到新的...
问Python Pandas -使用to_sql以块的形式编写大型数据帧EN数据预处理是数据科学管道的重要组成部分,需要...
defmain(sql_file,output_file):sql_content=read_sql_file(sql_file)# 读取 SQL 文件ifsql_content:matches=match_fields(sql_content)# 匹配字段fields=process_fields(matches)# 处理字段save_fields_to_file(fields,output_file)# 保存结果if__name__=="__main__":main('sample.sql','fields_output.tx...
使用cursor.execute和 SQL SELECT 语句来读取数据。 cursor.fetchall()用于接受查询并返回结果集以进行迭代。 Python # Fetch all rows from tablecursor.execute("SELECT * FROM pharmacy;") rows = cursor.fetchall()# Print all rowsforrowinrows: print("Data row = (%s, %s)"%(str(row[0]), str(...
to an empty string.withsql.connect(server_hostname = os.getenv("DATABRICKS_SERVER_HOSTNAME"), http_path = os.getenv("DATABRICKS_HTTP_PATH"), access_token = os.getenv("DATABRICKS_TOKEN"), staging_allowed_local_path ="/tmp/")asconnection:withconnection.cursor()ascursor:# Write a local ...