我需要编写一个加权版本的 random.choice(列表中的每个元素都有不同的被选中概率)。这就是我想出的: def weightedChoice(choices): """Like random.choice, but each element can have a different chance of being selected. choices can be any iterable containing iterables with two items each. Technically...
3.choice和choices的区别 权重示例代码: 我们还可以使用weights参数来指定各个元素被选中的概率。 importrandom# 定义一组水果和对应的权重fruits=['apple','banana','cherry']weights=[1,2,3]# 'cherry'被选择的概率最大# 随机选择三个水果,带权重random_weighted_fruits=random.choices(fruits,weights=weights,k...
self.totals.append(running_total)defnext(self):rnd=random.random()*self.totals[-1]returnbisect.bisect_right(self.totals,rnd)def__call__(self):returnself.next() 在调用次数超过1000次的时候,WeightedRandomGenerator的速度是weighted_choice的100倍 所以我们在对同一组权重列表进行多次计算的时候选择方法4,...
rnd = random.random() * self.totals[-1] return bisect.bisect_right(self.totals, rnd) def __call__(self): return self.next() 在调用次数超过1000次的时候,WeightedRandomGenerator的速度是weighted_choice的100倍 所以我们在对同一组权重列表进行多次计算的时候选择方法4, 如果少于100次, 则使用方法3 5...
为了实现按比例抽签,我们可以使用Python的random模块中的choices()函数。该函数允许我们根据指定的权重从给定的候选项中进行抽取。以下是使用该函数实现简单抽签的示例: importrandomdefweighted_random_choice(choices,weights,k=1):"""根据权重进行随机选择
For this purpose, we will usenumpy.random.choice()which generates a random sample from a given 1-D array. It also takes an argument calledpwhich is also a 1D array. These are the probabilities associated with each entry in the given 1D array. If not given the sample assumes a uniform ...
1.2 random模块中的方法 # 这是有关Python中自带的random模块功能简介#"""Random variable generators. integers --- uniform within range sequences --- pick random element pick random sample pick weighted random sample generate random permutation distributions on the...
import random colors = ['red', 'blue', 'green'] weighted_colors = random.choices(colors, weights=[1, 2, 3], k=5) print(weighted_colors) 复制代码 输出: ['green', 'blue', 'blue', 'red', 'green'] 复制代码 使用numpy.random.choice()函数从给定的序列中选择多个元素,可以指定选择的次数...
For weighted random sample of categories, we will extract the items from the list of tuples and separate the probabilities on one hand. To sample the items, we will applynumpy.random.choice()over the item array and pass a specific size also, pass the probability array. ...
⽐较直观的做法是把两个C放到列表中抽选,如[A, B, C, C],使⽤Python内置的函数random.choice[A, B, C, C], 这样C抽到的概率即为50%。这个办法的问题是权重⽐较⼤的时候,浪费内存空间。更⼀般的⽅法是,将所有权重加和4,然后从[0, 4)区间⾥随机挑选⼀个值,将A, B, C占⽤不...