random_split方法的示例 接下来,让我们通过一个示例来演示random_split方法的使用。 首先,我们导入必要的库: importtorchfromtorch.utils.dataimportDataset,random_split 1. 2. 然后,我们定义一个自定义的数据集类,继承自torch.utils.data.Dataset类: classMyDataset(Dataset):def__init__(self):self.data=list(ra...
from torch.utils.data import random_split %matplotlib inline 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 现在让我们来看看我们一直在讨论的数据集: dataset = CIFAR10(root='data/', download=True, transform=ToTensor()) test_dataset = CIFAR10(root='data/', train=False, transform=ToTens...
train_dataset, test_dataset=torch.utils.data.random_split(total_data, [train_size, test_size]) train_dataset, test_dataset 设置dataset batch_size = 32train_dl=torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl=torch.utils.data.DataLoader(...
from torch.utils.data import Dataset from torch.utils.data import DataLoader from torch.utils.data import random_split from torch.nn import Linear from torch.nn import ReLU from torch.nn import Softmax from torch.nn import Module from torch.optim import SGD from torch.nn import CrossEntropyLoss...
前m组测试后n组预测这样子划分?如果是pytorch,可以用torch.utils.data.random_split(dataset, lengths...
train_dataset, valid_dataset = torch.utils.data.random_split(mydataset, [train_size, valid_size]) # 如需“测试”数据集,则请取消注释 #test_size = valid_size #train_size = train_size - test_size #train_dataset, test_dataset = torch.utils.data.random_split(train_dataset, [train_size, ...
torch.nn.functional.embedding_bag不推荐使用旧签名embedding_bag(weight, input, ...),而应使用embedding_bag(input, weight, ...)(与torch.nn.functional.embedding一致) torch.nn.functional.sigmoid和torch.nn.functional.tanh不支持取代torch.sigmoid和torch.tanh#8748 ...
importrandom # 随机字母: defrndChar(): returnchr(random.randint(65,90)) # 随机颜色1: defrndColor(): return(random.randint(64,255), random.randint(64,255), random.randint(64,255)) # 随机颜色2: defrndColor2(): return(random.randint(32...
random.shuffle(indices) # 打乱数据集 from torch.utils.data.sampler import SubsetRandomSampler train_idx, test_idx = indices[split:], indices[:split] # 获取训练集,测试集 train_sampler = SubsetRandomSampler(train_idx) # 打乱训练集,测试集 test_sampler = SubsetRandomSampler(test_idx) #===数据...
复制 pip install nltk pandas numpy torch flask gunicorn 然后,我们创建 API 将使用的需求列表。 请注意,当我们将其上传到 Heroku 时,Heroku 将自动下载并安装此列表中的所有包。 我们可以通过键入以下命令来做到这一点: 代码语言:javascript 代码运行次数:0 运行 复制 pip freeze > requirements.txt 我们需要进行...