torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True 一般情况下,对于同一个工程而言,大家知道这个方法就足够了。 然饿,当我们手上有不止一个工程,且需要同步不同工程当中的某些计算流程的结果时,光会设置随机数种子...
random.seed(10) print(np.random.random()) 输出: 0.7713 0.7713 """ 道理同1 """ torch.manual_seed() torch.manual_seed(10) print(torch.rand(2) 输出: tensor([0.4581,0.4829]) tensor([0.4581,0.4829]) #torch.manual_seed(10) print(torch.rand(2) 输出: tensor([0.9582,0.3092]) tensor([...
~\AppData\Local\Continuum\anaconda3\envs\rl\lib\site-packages\torch_tensor_str.py in __init__(self, tensor) 99 100 else: --> 101 nonzero_finite_vals = torch.masked_select(tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)) 102 103 if nonzero_finite_vals.numel() == ...
x, y = torch.FloatTensor(x), torch.FloatTensor(y) torch.manual_seed(0) torch.random.manual_seed(0) model = MLP(x.shape[1]) optimizer = Adam(model.parameters()) for epoch in range(1, 201): model.train() pred_prob = model(x, alpha0, alpha1).view(-1) loss = bce_loss_func(p...
torch.manual_seed(seed) # 为cpu设置随机种子 torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子 cudnn:(对结果影响不大,会影响性能) torch.backends.cudnn.deterministic = True torch.backends.benchmark = False ...
对于深度学习框架,如PyTorch,有专门的种子设置函数来管理模型的随机初始化。调用torch.manual_seed(seed)可以设置CPU上的随机数种子,而torch.cuda.manual_seed(seed)则用于设置CUDA设备上的种子。如果需要在所有CUDA设备上设置种子,可以使用torch.cuda.manual_seed_all(seed)。在进行深度学习实验时,为了...
env_name='Pendulum-v0'env=gym.make(env_name) env.seed(0) torch.manual_seed(0) state_dim=env.observation_space.shape[0] action_dim=env.action_space.shape[0] agent=PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, ...
state_dim=env.observation_space.shape[0] action_dim=env.action_space.shape[0] action_bound= env.action_space.high[0]#动作最大值random.seed(0) np.random.seed(0) env.seed(0) torch.manual_seed(0) actor_lr= 3e-4critic_lr= 3e-3alpha_lr= 3e-4num_episodes= 100hidden_dim= 128gamma=...
seed (int) – CPU生成随机数的种子。取值范围为[-0x8000000000000000, 0xffffffffffffffff],十进制是[-9223372036854775808, 18446744073709551615],超出该范围将触发RuntimeError报错 返回 返回一个torch.Generator对象。 示例(设置随机种子) # test.pyimport torchtorch.manual_seed(0)print(torch.rand(1)) # 返回...
importtorchfromjoblibimportdump, loadimporttorch.utils.data asDataimportnumpyasnpimportpandasaspdimporttorchimporttorch.nnasnn# 参数与配置torch.manual_seed(100)# 设置随机种子,以使实验结果具有可重复性device = torch.device("cuda"iftorch.cuda.is_available()else"cpu")# 有GPU先用GPU训练# 加载数据集def...