f.close() print"Create ",jsonfilename," OK" return data=xlrd.open_workbook(excelFileName) table=data.sheet_by_name(u"tablelist") rs=table.nrows forrinrange(rs-1): printtable.cell_value(r+1,0),"==>", table.cell_value(r+1,2) desttable=data.sheet_by_name(table.cell_value(r+1...
Project:读取mysql数据库的数据,转为json格式'''importjson,MySQLdbdefTableToJson():try:#1-7:如何使用python DB API访问数据库流程的#1.创建mysql数据库连接对象connection#connection对象支持的方法有cursor(),commit(),rollback(),close()conn = MySQLdb.Connect(host='mysql服务器地址',user='用户名',passwd=...
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有...
>>> sjo.to_json(orient='table') >>> '{"schema":{"fields":[{"name":"index","type":"string"},{"name":"D","type":"integer"}],"primaryKey":["index"],"pandas_version":"0.20.0"},"data":[{"index":"x","D":15},{"index":"y","D":16},{"index":"z","D":17}]}' ...
CREATETABLElocations(idINTPRIMARYKEYAUTO_INCREMENT,cityVARCHAR(100),countryVARCHAR(100)); 1. 2. 3. 4. 5. 连接数据库 在代码中,我们首先需要导入mysql.connector模块,并使用connect()函数来连接到数据库。我们需要提供数据库的主机名、用户名、密码和数据库名称等信息。以下是连接数据库的示例代码: ...
>>> tables.export('foo.csv', f='csv', compress=True) # json, excel, html,sqlite,可指定输出格式 >>> tables[0].to_csv('foo.csv') # to_json, to_excel, to_html, to_sqlite, 导出数据为文件 >>> tables <TableList n=1>
pandas.DataFrame.to_json是一个用于将DataFrame转换为 JSON 字符串或将其导出为 JSON 文件的函数。其语法如下: DataFrame.to_json(path_or_buf=None, orient='columns', date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', ...
JSON内部的格式要注意,一个好的格式能够方便读取,可以用indent格式化。 参考链接: https://docs.python.org/3.6/library/json.html#py-to-json-table https://www.cnblogs.com/tjuyuan/p/6795860.html http://liuzhijun.iteye.com/blog/1859857 https://blog.csdn.net/qq_22073849/article/details/78192289 ...
CREATE TABLE `tb_menu` ( `id` varchar(32) NOT NULL COMMENT '唯一标识', `menu_name` varchar(40) DEFAULT NULL COMMENT '菜单名称', `menu_url` varchar(100) DEFAULT NULL COMMENT '菜单链接', `type` varchar(1) DEFAULT NULL COMMENT '类型', `parent` varchar(32) DEFAULT NULL COMMENT '父级...
table df.to_json(orient='table') # {"schema":{"fields":[{"name":"index","type":"integer"},{"name":"name","type":"string"},{"name":"age","type":"integer"}],"primaryKey":["index"],"pandas_version":"0.20.0"},"data":[{"index":0,"name":"tian","age":19},{"index"...