pyqstrat - A fast, extensible, transparent python library for backtesting quantitative strategies. NowTrade - Python library for backtesting technical/mechanical strategies in the stock and currency markets. pinkfish - A backtester and spreadsheet library for security analysis. aat - Async Algorithmic ...
import baostock as bs import pandas as pd import numpy as np import cv2 import math import os #saveStockData是保存股票的数据的函数,code是股票代码,startDate,endDate是起始日期,rootPath是保存路径,flag是日d,周w,月m标识符 def saveStockData(code,startDate,endDate,rootPath,flag): rs = bs.query...
Stock Indicators for Pythonis a PyPI library package that produces financial market technical indicators. Send in historical price quotes and get back desired indicators such as moving averages, Relative Strength Index, Stochastic Oscillator, Parabolic SAR, etc. Nothing more. ...
Learn More ⟶ Talent Assessment Conduct Customized Online Assessments on our Powerful Cloud-based Platform, Secured with Best-in-class Proctoring Learn More ⟶ Research & Advisory AIM Research produces a series of annual reports on AI & Data Science covering every aspect of the industry. Request...
ffn - A financial function library for Python. pynance - PyNance is open-source software for retrieving, analysing and visualizing data from stock and derivatives markets. tia - Toolkit for integration and analysis. hasura/base-python-dash - Hasura quickstart to deploy Dash framework. Written on...
Technical Indicators using Python Ta-Lib We will first import the Python Ta-Lib library since we are using it to work out different indicators. Along with that, we use the python matplotlib to draw their graphs for analysis. Since we are going to be working on the stock prices, we will ...
Add your technical indicators (example: moving average, relative strength index, neural network, random forest, etc) Add criteria based on your technical indicators (example: neural network prediction is higher than current price) Associate actions to those criteria (example: go long when a certain...
对于每天运行的sh /data/stock/jobs/cron.daily/run_daily 进行分析 找到主要是guess_indicators_daily_job.py文件来调用相应的股票选择,根据经验与相关参数,调整如下: 1、对于需要关注的股票参数调整如下: 下面是原先的代码 # K值在80以上,D值在70以上,J值大于90时为超买。
qstock与其他量化库的区别就是,返回的数据列名是证券的名称,而不是证券的代码,注意这一点就好。 3.数据计算 轮动策略的第二个核心就是强弱排序,这里采用的是动量策略的规则,每天买入前N个交易日涨幅最大的那一个ETF,因此需要计算出每个ETF在每一天的前N个交易日的涨幅。 为了方便后面的回测,还需要顺带计算出每...
sql_1 = """SELECT `date`,`code`,`name`,`latest_price`,`quote_change`,`ups_downs`,`volume`,`turnover`,`amplitude`,`high`,`low`,`open`,`closed`,`quantity_ratio`,`turnover_rate`,`pe_dynamic`,`pb`,`kdjj`,`rsi_6`,`cci`FROM stock_data.guess_indicators_daily WHERE `date` = ...