pandas中的sort_values函数类似于 SQL 中的order by,可以将数据集依据特定的字段进行排序。 可根据列数据,也可以根据行数据排序。 一、介绍 使用语法为: df.sort_values(by='xxx', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None) ...
# 依据第一列排序 并将该列空值放在首位df.sort_values(by='col1', na_position='first')# 依据第二、三列倒序df.sort_values(by=['col2','col3'], ascending=False)# 替换原数据df.sort_values(by='col1', inplace=True) 按行排序 # 按照索引值为0的行 即第一行的值来降序x = pd.DataFrame...
通过index使用对 DataFrame 进行排序.sort_index() 在对值进行排序时组织缺失的数据 使用set to 对DataFrame进行就地排序inplaceTrue 要学习本教程,您需要对Pandas DataFrames有基本的了解,并对从文件中读取数据有一定的了解。 Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可...
DataFrame数据排序主要使用sort_values()方法,该方法类似于sql中的order by。sort_values()方法可以根据指定行/列进行排序。 语法如下:sort_values(by, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’,ignore_indexFalse, key: ‘ValueKeyFunc’ = None) ...
一、sort_values()函数用途 pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。 二、sort_values()函数的具体参数 用法: 1DataFrame.sort_values(by=‘##',axis=0,ascending=True, inplace=False, na_positio...
food.sort_values("Sodium_(mg)",inplace=True,ascending=False)print(food["Sodium_(mg)"]) 我们对food,进行sort_values方法,会自动帮我们排序,第一个参数"Sodium_(mg)"是我们数据中的列名 意思是说,你要对哪一列数据进行排序,inplace 参数的意思是,你需要生成一个新的数据,还是在原来的基础上进行,可以通...
3、sort_values() 具体参数 格式如下: DataFrame.sort_values(by=‘进行排序的列名或索引值’, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’, ignore_index=False, key=None) 1. 4、sort_values() 使用
一、sort_values函数(python-pandas库) sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last') 参数说明: by:可以填入字符串或者字符串组成的列表。也就是说,如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
会用到pandas中的排序方法sort_values(),表示根据某一列排序。 pd.sort_values(by="A",inplace=True) 表示pd按照A这个字段排序,inplace默认为False,如果该值为True,那么就会在当前的dataframe上操作。 ascending 默认等于True,按从小到大排列,改为False 按从大到小排。
inplace:如果为True,则生成的数据框架将替换原始数据框架,默认值为False。 .sort_values() 主要用于按任意列排序。 这些参数类似于.sort_index()方法,只是我们现在可以指定作为排序依据的列: by:要排序的列。可以获取字符串或字符串列表。 其他参数同上述方法。