sort_values是Pandas库中DataFrame和Series对象的一个非常有用的方法,它用于根据指定列或索引的值对数据进行排序。这个方法非常灵活,不仅可以对单列进行排序,也可以同时根据多列进行排序,支持升序和降序排序。 在sort_values函数中使用参数来实现降序排序 在sort_values方法中,要实现降序排序,需要设置ascending参数为False。
现在我们准备使用sort_values方法对DataFrame进行排序。我们希望根据“分数”这一列从大到小进行排序。 # 使用sort_values方法进行排序,ascending参数设置为False表示降序sorted_df=df.sort_values(by='分数',ascending=False)print("\n排序后的DataFrame:")# 输出说明print(sorted_df)# 打印排序后的DataFrame 1. 2....
df.sort_values('Length') df.sort_values('High', ascending=False) # 降序 df.sort_values(['Length', 'High']) df.sort_values(['Length', 'High'], ascending=[True, False]) # 多字段排序 1. 2. 3. 4. 5. 3.自定义排序 映射方式 # 输出并非预期 df.sort_values('Size') ''' Name L...
下面对sort_values中几个常用的参数进行讲解,它的具体语法如下: sort_values(by=[列表],ascending=[True or False], axis=(1 or 0)) 其中by后面为要排序的列,可以是一列,也可以是多列。表示首先按第一列,再依次按后面的列进行排序。 ascending=True表示按升序排列,否则为降序排列,默认按升序排列。 axis=1...
2.传统排序 df.sort_values('Name') df.sort_values('Length') df.sort_values('High', ascending=False)# 降序df.sort_values(['Length','High']) df.sort_values(['Length','High'], ascending=[True,False])# 多字段排序 3.自定义排序 ...
对于numpy数组,可以直接使用.argsort()或.sort()方法进行排序。例如,对一维数组排序: import numpy as np arr = np.array([3, 1, 2]) sorted_arr = np.sort(arr) print(sorted_arr) # 输出: [1, 2, 3] 而对于pandas DataFrame ,使用.sort_values()方法可以灵活地根据列进行排序: ...
# 依据第一列排序 并将该列空值放在首位df.sort_values(by='col1', na_position='first')# 依据第二、三列倒序df.sort_values(by=['col2','col3'], ascending=False)# 替换原数据df.sort_values(by='col1', inplace=True) 按行排序 # 按照索引值为0的行 即第一行的值来降序x = pd.DataFrame...
1.对‘rose’这一列进行降序排序: df_sc=scores.sort_values(by='rose',ascending=False) df_sc 2.对第0行进行升序排序: scores.sort_values(by=0,axis=1,ascending=True) 3.第1行进行升序,第0行进行降序: scores.sort_values(by=[1,0],axis=1,ascending=[True,False] ...
Pandas库中的sort_values()函数可以用于对数据进行排序。该函数默认按升序排序,也可以设置ascending=False参数进行降序排序。下面是一个例子: data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 20, 22, 27],'Score': [85, 90, 78, 92]}df = pd.DataFrame(data)sorted_df =...