df.sort_values('Name') df.sort_values('Length') df.sort_values('High', ascending=False) # 降序 df.sort_values(['Length', 'High']) df.sort_values(['Length', 'High'], ascending=[True, False]) # 多字段排序 1. 2. 3. 4. 5. 3.自定义排序 映射方式 # 输出并非预期 df.sort_valu...
pandas 库的 sort_values() 函数可以对 Dataframe 的数据集按照某个字段中的数据进行排序。该函数可以指定列数据或行数据进行排序,可以是单个,也可以是 多个(以前经常用来处理单列/行数据,忘记了 sort_values() 也可以处理多列/行数据)。 series 也有 一个 sort_values() 函数,但在参数上稍有区别。 官方文档:...
python中默认按行索引号进行排序,如果要自定义数据框的排序,可以用sort_values函数进行重定义排序。 下面对sort_values中几个常用的参数进行讲解,它的具体语法如下: sort_values(by=[列表],ascending=[True or False], axis=(1 or 0)) 其中by后面为要排序的列,可以是一列,也可以是多列。表示首先按第一列,...
一、sort_values()函数用途 pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。 二、sort_values()函数的具体参数 用法: 1DataFrame.sort_values(by=‘##',axis=0,ascending=True, inplace=False, na_positio...
2、sort_values:顾名思义是根据dataframe值进行排序,常用的参数为: sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last',ignore_index=False,key:'ValueKeyFunc'=None) by:str或者是str的list,需要排序的列名。
语法如下:sort_values(by, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’,ignore_indexFalse, key: ‘ValueKeyFunc’ = None) 参数说明:by:要排序的名称列表 axis:轴,0代表行,1代表列,默认是0 ascending:升序或者降序,布尔值,指定多个排序就可以使用布尔值列表,默认是...
一、sort_values函数(python-pandas库) sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last') 参数说明: by:可以填入字符串或者字符串组成的列表。也就是说,如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
df.sort_values(by='column_name', ascending=True/False) 其中,by参数指定要排序的列名,ascending参数指定升序或降序排列。 2.对Series进行排序: s.sort_values(ascending=True/False) 其中,ascending参数指定升序或降序排列。 3.对多列进行排序: df.sort_values(by=['column1', 'column2'], ascending=[True...
# 按第一列降序 第二列升序排列df.sort_values(by=['col1','col2'], ascending=[False,True]) 索引重置 df.sort_values(by='col1', ignore_index=True) key参数解释 data1 = pd.DataFrame({'col1': [2,1,9,8,7,4],'col2': [0,1,9,4,2,3],'col3': ['a','e','F','B','c'...