sklearn.metrics.roc_auc_score (y_true, y_score, average=’macro’, sample_weight=None, max_fpr=None) AUC面积的分数使用以上类来进行计算,输入的参数也比较简单,就是真实标签,和与roc_curve中一致的置信度分数或者概率值。 from sklearn.metrics import roc_auc_score as AUC from sklearn.metrics impo...
同样对于ROC的真正例率和假正例率sklearn库中也有函数可以实现,roc_curve,给出官方文档地址文档地址,给出实现代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.font_manager import FontProperties from sklearn.metrics import roc_curve def plot(fpr,tpr):#画出函数图像 fig = plt.fi...
以下是roc_curve的用法以及一个示例代码: roc_curve python fromsklearn.metricsimportroc_curve # 假设 y_true 是真实的标签,y_scores 是模型预测的概率分数 y_true = [0,0,1,1] y_scores = [0.1,0.4,0.35,0.8] fpr, tpr, thresholds = roc_curve(y_true, y_scores) 代码示例: python fromsklearn...
#计算不同阈值下,fpr和tpr的组合值,其中fpr表示1-Specificity,tpr表示sensitivity fpr,tpr,threshold =metrics.roc_curve(y_test,y_score) # 计算AUC的值 roc_auc = metrics.auc(fpr,tpr) print("神经网络模型预测测试集数据ROC曲线的AUC:",roc_auc) 神经网络模型预测测试集数据ROC曲线的AUC: 0.9423111111111111...
直接上代码: from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc…
ROC曲线(Receiver Operating Characteristic curve)是一种用于评估分类模型性能的可视化工具,它展示了在不同阈值下,真阳性率(TPR)和假阳性率(FPR)之间的关系,在Python中,我们可以使用sklearn.metrics库中的roc_curve和auc函数来计算ROC曲线和AUC值,然后使用matplotlib.pyplot库来绘制ROC曲线,以下是详细的技术教学: ...
from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp ...
from sklearn.metrics import roc_curve, auc # 计算 fpr, tpr, thread = roc_curve(y_test, y_score) roc_auc[i] = auc(fpr, tpr) # 绘图 plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_au...
绘制ROC曲线代码如下: #绘制ROC曲线函数 import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_curve,auc from sklearn.model_selection import StratifiedKFold def drawROC(classifier,X,y): #X:训练集/测试集 #y:训练集标签/测试集标签 ...
# ROC 曲线 ## 准备数据 importnumpyasnpfromsklearnimportmetrics pred=np.concatenate((np.random.normal(5,2,30),np.random.normal(7,2,30)))y=np.concatenate((np.full(30,0),np.full(30,1))) ## 绘制ROC曲线 fromsklearn.metricsimportroc_curvefromsklearn.metricsimportRocCurveDisplay ...