from sklearn.linear_modelimportLinearRegression #线性回归 from sklearnimportmetricsimportnumpyasnpimportmatplotlib.pyplotasplt defmul_lr():#续前面代码 #剔除日期数据,一般没有这列可不执行,选取以下数据http://blog.csdn.net/chixujohnny/article/details/51095817X=pd_data.loc[:,('中证500','泸深300',...
plt.ylabel("y_predict_in_test") plt.plot([-10,60],[-10,60],'k--') plt.show() 输出值: C:\Users\asus\AppData\Local\Programs\Python\Python35-32\python.exe "D:/BaiduYunDownload/python_exe/daily exercise/OpenCV and MachineLearning/Linear_regression.py" ['DESCR', 'data', 'feature_nam...
接下来,我们将使用Scikit-learn库构建和训练线性回归模型。通过分割数据集为训练集和测试集,我们可以评估模型在未见过的数据上的表现。from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score 分割数据集 ...
predict函数的参数可以根据所使用的机器学习库而有所不同。在scikit-learn中,predict函数的参数通常包括以下几种: X_test: 要进行预测的数据集。它是一个二维数组或类似的数据结构,其中包含特征值。在上述示例中,我们使用了训练数据X进行预测。 y: 在某些情况下,如果预测目标不是直接给出的,可以将目标值作为参数传...
利用Python的sklearn库对实验数据利用多元线性回归建立模型,使用的实验数据集包括88个样本,每个样本有8个特征值,标签值为失叶率。同时将数据集进行拆分,训练集用于模型训练,测试集用于测试,利用训练集训练出的模型对测试集进行模型预测。这里利用sklearn的train_test_split函数将20%的样本随机划分为测试集,80%为训练集...
python中linear_predict函数 python linearregression函数 昨天看了一点关于线性回归的概念和代码,将数据进行拟合,找出回归系数,拟合样本点,算出回归系数和截距,检测测试点。 AI检测代码解析 # 线性回归模型 from sklearn import linear_model # 导入线型模型模块...
一.sklearn线性回归详解 1.1 线性回归参数 介绍完线性回归,那么我们来看看如何运用sklearn来调用线性回归模型,进行训练和预测。 AI检测代码解析 def LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None ) - fit_intercept:默认为true,参数意思是说要不要计算此模型的截距。 如果设置...
sklearn.linear_model.LinearRegression( fit_intercept=True , normalize=False , copy_X=True , n_jobs=1 ) 线性回归里的参数,都是可以选用默认值,不用特意调参的。说明线性回归模型主要依靠数据本身,如果数据最后的公式达到的预测准确度不高,也没有办法。
sklearn.linear_model.LinearRegression() class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False) LinearRegression() 类的参数不多,通常几乎不需要设置。 fit_intercept:bool, default=True 是否计算截距。默认值 True,计算截距。
predict(X)用训练的模型预测数据集 X 的输出。即可以对训练样本给出模型输出结果,也可以对测试样本给出预测结果。 score(X,y[,sample_weight])R2 判定系数,是常用的模型评价指标。 3.2 一元线性回归 LinearRegression 使用例程: # skl_LinearR_v1a.py# Demo of linear regression by scikit-learn# Copyright ...