AI代码解释 from sklearnimportlinear_model clf=linear_model.LinearRegression()clf.fit([[0,0],[1,1],[2,2]],[0,1,2])LinearRegression(copy_X=True,fit_intercept=True,n_jobs=1,normalize=False)clf.coef_array([0.5,0.5])
我们首先需要导入sklearn.linear_model中的LinearRegression模块,然后实例化模型对象。 from sklearn.linear_model import LinearRegression model = LinearRegression() 1. 2. 准备数据 数据通常需要划分为特征(X)和目标变量(y)。数据可以是数组、DataFrame 或其他格式。示例: # 示例数据:二维数组 X 和一维数组 y X...
SKlearn 包中的 LinearRegression() 方法,不宜从字面理解为线性回归方法, LinearRegression() 仅指基于普通最小二乘法(OLS)的线性回归方法。 sklearn.linear_model.LinearRegression 类是 OLS 线性回归算法的具体实现,官网介绍详见:https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegre...
from sklearn.linear_model import LogisticRegression # 定义逻辑回归模型 model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0...
本文简要介绍python语言中sklearn.linear_model.LinearRegression的用法。 用法: classsklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False) 普通最小二乘线性回归。 LinearRegression 使用系数 w = (w1, …, wp) 拟合线性模型,以最...
python sklearn.linear_model.LinearRegression.score score(self, X, y, sample_weight=None) 作用:返回该次预测的系数R2 其中R2=(1-u/v)。u=((y_true - y_pred) ** 2).sum() v=((y_true - y_true.mean()) ** 2).sum() 其中可能得到的最好的分数是1.当一个模型不论输入何种特征值,其...
方法8: sklearn.linear_model.LinearRegression( ) 这个方法经常被大部分机器学习工程师与数据科学家使用。然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。
from sklearn import linear_model linereg01= linear_model.LinearRegression() #生成一个线性回归实例 # 分割模型为训练集与测试集(9:1) X_train,X_test,y_train,y_test= model_selection.train_test_split( boston.data,boston.target,test_size=0.1,random_state=42 ...
使用skLearn 进行线性回归建模: X = boston_df[['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX','PTRATIO', 'B', 'LSTAT']] y = boston_df['PRICE'] lm = linear_model.LinearRegression() model = lm.fit(X,y) model lm.fit() 函数用于拟合线性模型。我们希望使用模型进...
接下来,我们将使用Scikit-learn库构建和训练线性回归模型。通过分割数据集为训练集和测试集,我们可以评估模型在未见过的数据上的表现。from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score 分割数据集 ...