通过predict方法获取每个样本的聚类标签,并使用scatter函数绘制聚类结果。最后,将聚类中心以黑色点的形式绘制在图表中。 四、注意事项 在使用KMeans算法时,需要根据实际数据选择合适的聚类数目n_clusters。聚类数目过少可能导致信息丢失,过多则可能产生过拟合。 初始质心的选择对KMeans算法的结果有一定影响。可以通过设置in...
from sklearn.cluster import KMeans import numpy as np def mask_thresh(path,save_path,bg_color,n_clusters): img = cv.imread(path) #聚类 h, w, c = img.shape image = img.reshape(h*w,c) X = image cluster = KMeans(n_clusters=n_clusters, random_state=0, n_init= 'auto').fit(X...
一种常见的优化方法是采用最大距离法,如:首先选取数据集中距离最大的两个点作为初始聚类中心,将剩余数据对象依据到聚类中心点距离的远近分配到相应的簇中,并更新聚类中心,然后继续寻找与聚类中心距离最远的点作为下一个中心点…… 与此类似地还有K-Means++,它是传统K-Means的改良版,同样是基于最大距离,这里结合...
K-means在sklearn.cluster中,用到K-means聚类时,我们只需: from sklearn.cluster import KMeans 1. K-means在Python的三方库中的定义是这样的: class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, rando...
四.结合降维处理的聚类分析1.PCA降维 2.Sklearn PCA降维 3.PCA降维实例 五.基于均值漂移的图像聚类1.MeanShift图像聚类 2.K-Means图像聚类 六.基于文本的树状关键词聚类 七.总结 下载地址: https://github.com/eastmountyxz/Python-zero2one 在过去,科学家会根据物种的形状习性规律等特征将其划分为不同类型的门...
本文件算法将实现Python简单实现K-means聚类算法,然后进行两个案例: 对普通数据进行聚类 压缩图像 然后使用scikit-learn包实现图片压缩案例。 实验环境:win10 、Jupyter 普通数据聚类 1 加载数据并可视化 import numpy as np import pandas as pd import matplotlib.pyplot as plt ...
简介:在Python中使用K-Means聚类和PCA主成分分析进行图像压缩(一) 各位读者好,在这片文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。图像压缩的目的是在保持与原始图像的相似性的同时,使图像占用的空间...
各位读者好,在这片文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。图像压缩的目的是在保持与原始图像的相似性的同时,使图像占用的空间尽可能地减小,这由图像的差异百分比表示。图像压缩需要几个Python库,...
3、k-means聚类分割 这里使用的图片是62mp418.jpg import numpy as npimport cv2from sklearn.cluster import KMeans imgData = []img = cv2.imread('62mp418.jpg') imginfo=img.shaperow=imginfo[0]col=imginfo[1]deep=imginfo[2]for i in range(0,r...