from sklearn.metricsimportaccuracy_score y_pred=[0,2,1,3,9,9,8,5,8]y_true=[0,1,2,3,2,6,3,5,9]accuracy_score(y_true,y_pred)Out[127]:0.33333333333333331accuracy_score(y_true,y_pred,normalize=False)# 类似海明距离,每个类别求准确后,再求微平均 Out[128]:3 第二种方式:metrics 宏...
本文简要介绍python语言中 sklearn.metrics.accuracy_score 的用法。 用法: sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)准确度分类得分。在多标签分类中,此函数计算子集精度:为样本预测的标签集必须与 y_true 中的相应标签集完全匹配。
当normalize为True时,最好的表现是score为1,当normalize为False时,最好的表现是score未样本数量. #示例 import numpy as np from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] print(accuracy_score(y_true, y_pred)) # 0.5 print(accuracy_score(y_tr...
fromsklearn.metricsimportaccuracy_score y_true=[1,0,1,1]y_pred=[0,0,1,0]# 错误的预测结果accuracy=accuracy_score(y_true,y_pred)# 计算准确性 1. 2. 3. 4. 5. 在上述代码中,y_true和y_pred的格式需要完全一致,否则将导致accuracy_score计算准确性时发生异常。 根因分析 造成以上错误的根本原...
通过查阅资料,我们知道svm算法在scikit-learn.svm.SVC下,所以: 算法位置填入:svm 算法名填入:SVC() 模型名自己起,这里我们就叫svm_model 套用模板得到程序如下: # svm分类器 fromsklearn.svmimportSVC fromsklearn.metricsimportaccuracy_score svm_model = SVC() ...
在Python中的sklearn中的metrics中有很多对于模型评估方法的选项,本篇文章主要介绍其中关于分类算法的模型评估,主要是记录有哪些方法,这些方法的数学含义,及如何用这种方法来评估模型。 在计算之前需要导入相应的函数库 #导入相应的函数库fromsklearn.metricsimportaccuracy_scorefromsklearn.metricsimportprecision_scorefrom...
accuracy),即正确预测的样本数与总样本数的比例。对于回归任务,score通常是计算模型在测试集上的R平方...
Sklearn代码调用如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from sklearn.metricsimportr2_score y_true=[1,2,4]y_pred=[1.3,2.5,3.7]r2_score(y_true,y_pred) 4.其他标准。 如F1 Score值,用于测量不均衡数据的精度。 过拟合问题:...
fromsklearn.metricsimportaccuracy_score importmatplotlib.pyplotasplt importnumpyasnp # Load sample data X, y = load_breast_cancer(return_X_y=True) # Split data into train and test sets X_train, X_test, y_train, y_test =...
sklearn建模的基本流程: 在这个流程下,对应的代码为: fromsklearnimporttree#导入需要的模块 clf = tree.DecisionTreeClassifier()#实例化 clf = clf.fit(X_train,y_train)#用训练集数据训练模型 result = clf.score(X_test,y_test)#导入测试集,从接口中调用需要的信息 ...