接下来,我们将计算数据中每个元素的概率并根据香农熵的公式进行计算: defshannon_entropy(data):# 计算元素频率freq=Counter(data)probabilities=[count/len(data)forcountinfreq.values()]# 计算香农熵entropy=-sum(p*np.log2(p)forpinprobabilities)returnentropy# 计算香农熵entropy=shannon_entropy(data)print(f"...
用法: skimage.measure.shannon_entropy(image, base=2)计算图像的香农熵。香农熵定义为 S = -sum(pk * log(pk)),其中 pk 是值为 k 的像素的频率/概率。参数: image:(N, M) ndarray 灰度输入图像。 base:浮点数,可选 要使用的对数底。 返回: entropy:浮点数 ...
def inception_pseudo(dim=224,freeze_layers=30,full_freeze='N'): model = InceptionV3(weights='imagenet',include_top=False) x = model.output x = GlobalAveragePooling2D()(x) x = Dense(512, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(512, activation='relu')(x) x = Dro...
is_training=is_training) discr_1_l = discriminator(x=input_x, is_training=is_training, reuse_variables=False) discr_2_l = discriminator(x=gen, is_training=is_training, reuse_variables=True) loss_d_1 = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(discr_...
因此,我们可以看到生成器最小化-V(G, D_hat)等于最小化实际分布P(x)与生成器生成的样本分布之间的 Jensen Shannon 散度G(即G(x))。 训练GAN 并不是一个简单的过程,在训练这样的网络时我们需要考虑几个技术方面的考虑。 我们将使用高级 GAN 网络在第 4 章“使用 GANs 的时装行业中的风格迁移”中构建跨域...
We can get a heatmap of this function as follows: importternaryscale=60figure,tax=ternary.figure(scale=scale)tax.heatmapf(shannon_entropy,boundary=True,style="triangular")tax.boundary(linewidth=2.0)tax.set_title("Shannon Entropy Heatmap")tax.show() ...
def shannon_entropy(p): """Computes the Shannon Entropy at a distribution in the simplex.""" s = 0. for i in range(len(p)): try: s += p[i] * math.log(p[i]) except ValueError: continue return -1.*s We can get a heatmap of this function as follows: import ternary scale ...
In the case of a continuous-valued attribute, split points for branches also need to define. The most popular selection measures are Information Gain, Gain Ratio, and Gini Index. Information Gain Claude Shannon invented the concept of entropy, which measures the impurity of the input set. In ...
The Information Content for each position is computed as 2 - Shannon's Entropy. The proportional height of each of the bases in the logo is then computed multiplying the Information content of that position by the relative frequency of the base at that position. The logo is finally saved as...
shannon murphy angels prince cameron girls madison wilson carlos hooters willie startrek captain maddog jasmine butter booger angela golf lauren rocket tiffany theman dennis liverpoo flower forever green jackie muffin turtle sophie danielle redskins ...