reset_index是set_index的逆操作,将索引重新转换为列。reset_index的参数如下所示 reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='') 简单的示例如下所示: level:针对多层索引的情况下,level用来指定需要操作的index。默认将所有层级的索引转换为列。示例如下: drop:是否保留原...
'd'], drop=False)# 2.添加到原有索引df.set_index('c', append=True)# 3.多重索引df.set_index(['c','d'])# 4.修改原数据框df.set_index(['c','d'], inplace=True)# 5.手动
DataFrame.set_index(keys,drop=True,append=False,inplace=False,verify_integrity=False) 1. 参数说明: keys:要用作新索引的列名或列名的列表。 drop:是否删除原来的列,默认为True。 append:是否保留原来的索引,默认为False。 inplace:是否在原DataFrame上进行修改,默认为False。 verify_integrity:是否检查新索引的...
set_index()方法是DataFrame对象的一个方法。它的语法如下: DataFrame.set_index(keys,drop=True,append=False,inplace=False,verify_integrity=False) 1. 参数说明: keys:要设置为索引的列或列的名称,可以是单个列的名称(字符串类型),也可以是多个列的名称(列表类型)。 drop:是否将原来的列从DataFrame中删除,默...
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 其参数含义如下: keys 表示要设置为索引的列名(如有多个应放在一个列表里)。 drop 表示将设置为索引的列删除,默认为 True。 append 表示是否将新的索引追加到原索引后(即是否保留原索引),默认为 False。
1、set_index() 作用:DataFrame可以通过set_index方法,将普通列设置为单索引/复合索引。 格式:DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 参数含义: keys:列标签或列标签/数组列表,需要设置为索引的普通列 ...
set_index()函数,可以指定某一字段为索引。关于set_index 参数 1 keys : 要设置为索引的列名(如有多个应放在一个列表里)2 drop : 将设置为索引的列删除,默认为 True 3 append : 是否将新的索引追加到原索引后(即是否保留原索引),默认为 False 4 inplace : 是否在原 DataFrame 上修改,默认为 False...
python pandas通过set_index设置某列为indexmp.weixin.qq.com/s/LlkKeFllwZklodOdbJMSfg pandas中set_index方法是专门用来将某一列设置为index的方法。它具有简单,方便,快捷的特点。 主要参数: keys:需要设置为index的列名 drop:True or False。在将原来的列设置为index,是否需要删除原来的列。默认为True,即删...
# 使用 set_index() 示例 # 设置单列为索引 single_index_df = df.set_index('A') # 设置多列为多层索引 multi_index_df = df.set_index(['A', 'B']) # 设置索引并保留原始列 index_with_original_df = df.set_index('A', drop=False) ...
df.set_index(“date”, inplace=True) 如果要保留将要被设置为索引的列,可以设置drop=False。 df.set_index(“date”, drop=False) 3. 一些操作后重置索引 在处理 DataFrame 时,某些操作(例如删除行、索引选择等)将会生成原始索引的子集,这样默认的数字索引排序就乱了。如要重新生成连续索引,可以使用reset_in...