importnumpyasnpobj=np.array([[1,2,3],[4,5,6]])obj 输出:array([[1, 2, 3], [4...
array([1, 2, 3, 4, 5]) print("一维数组:", one_dimensional) # 创建一个二维数组 two_dimensional = np.array([[1, 2, 3], [4, 5, 6]]) print("二维数组:") print(two_dimensional) # 创建一个三维数组 three_dimensional = np.array([[[1, 2], [3, 4]], [[5, 6]...
double', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj...
我们可以使用 pyspark 模块,直接 pip install 安装即可。 frompysparkimportSparkContext, SparkConf# 指定配置,setAppName 负责指定应用名称,setMaster 负责指定运行模式(关于运行模式一会儿介绍)conf = SparkConf().setAppName("satori").setMaster("local[*]")# 实例化 SparkContext 对象sc = SparkContext(conf=c...
cursor()# 查询数据库表中是否有 users 表, 如果没有则创建cursor.execute("SELECT name FROM sqlite...
import jsonjson_data = '{"name": "John", "age": 25}'data = json.loads(json_data)print(data['name'])5.数据库操作:连接SQLite数据库并执行查询 import sqlite3conn = sqlite3.connect('example.db')cursor = conn.cursor()cursor.execute("SELECT * FROM users")rows = cursor.fetchall()for ...
# 拆分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 使用随机逻辑回归模型筛选变量sel = SelectFromModel(LogisticRegression(random_state=42, solver='liblinear')) sel.fit(X_train, y_train)# 获取被选中的特征selected_features =...
5)用 isreal 函数来判断数组元素是否为实数,用 select 函数选出它们。 select 函数可根据一组给定的条件,从一组元素中挑选出符合条件的元素并返回数组。得到的实数交叉点、再去掉其中为0的元素。 trim_zeros 函数可以去掉一维数组中开头和末尾为0的元素。reals = np.isreal(xpoints) #用isreal 函数来判断...
import numpy as np # Create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print(a) # Create an array of indices b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices ...
>>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ array([ True, True, True, True, True, False, False, False, False, False]) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) ...