2. 3D散点图(3D Scatter Plot) 用于可视化三维数据的散点图,通过在三维空间中绘制数据点来展示数据的分布。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import matplotlib.pyplot as plt import numpy as np # 数据准备 x = np.random.rand(100) # x轴数据 y = np.random.rand(100) # y轴数...
Matplotlib 中的 scatter() 函数可以用于创建散点图 seaborn.scatterplot() 函数来创建二维散点图,并传递数据点的坐标和其他可选参数 01. Seaborn 函数的基本语法如下: importseabornassnssns.scatterplot(data=data_frame,x="x_variable",y="y_variable") x_variable是数据集中表示x轴的变量列名 y_variable是...
绘制三维散点图(3D Scatter Plot):import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import...
ax.set_title('3D Scatter Plot')plt.show() # Call this last to ensure the plot is displayed in the notebook cell output area (if using Jupyter notebook) or in the GUI (if using a regular Python IDE) before executing the next line of code in the cell which would overwrite the existi...
➤02 绘制Scatter 利用和上面的相同的绘制命令, 将原来的plot3D修改成为 scatter即可。 frommpl_toolkits.mplot3dimportaxes3d ax=plt.axes(projection='3d')angle=linspace(0,2*pi*5,40)x=cos(angle)y=sin(angle)z=linspace(0,5,40)ax.scatter(x,y,z,color='b')ax.set_xlabel('X Axes')ax.set_...
plot修改成为 scatter即可 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from mpltoolkits.mplot3d import axes3d ax = plt.axes(projection'3d') angle= linspace(0, 2*pi*5, 40) x = cosangle) y = sin(angle) z = linspace(0, 5, 40) ax.scatter(x,y,z, color='b') ax....
用scatter()散点绘制三维坐标点 from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D dot1 = [[0, 0, 0], [1, 1, 1], [ 2, 2, 2], [2, 2, 3], [2, 2, 4]] # 得到五个点 plt.figure() # 得到画面 ...
sns.scatterplot(data=tips, x="total_bill", y="tip", hue="time") 1. 1.3根据time列进行标记区分 sns.scatterplot(data=tips, x="total_bill", y="tip", hue="time", style="time") 1. 1.4增加调色板,可以对比1.2 sns.scatterplot(data=tips, x="total_bill", y="tip", hue="time", pa...
title='3D Scatter Plot') fig.show() 以上代码将生成一个简单的三维散点图,展示了随机生成的数据点在三维空间中的分布情况。 绘制曲面图 接下来,我们将绘制一个曲面图。假设我们有一个函数f(x, y),我们想要可视化它在三维空间中的表面。 # 定义函数 ...
ax.plot(x, y, z, label='parametric curve') ax.legend() plt.show() ➤02绘制Scatter 利用和上面的相同的绘制命令,将原来的plot3D修改成为 scatter即可。 frommpl_toolkits.mplot3dimportaxes3d ax = plt.axes(projection='3d') angle = linspace(0,2*pi*5,40) ...