% notification: this is a modification work based on that of Kijoon Lee. function saen = SampEntropy( dim, r, data, tau ) % SAMPEN Sample Entropy % calculates the sample entropy of a given time series data % SampEn is conceptually similar to approximate entropy (ApEn), but has % follo...
样本熵(Sample Entropy)是Richman等人提出的一种与近似熵不同的不计数自身匹配的统计量[1]。样本熵是...
matlab代码示例: function H=SampleEntropy(N,m,r,input) for i = 1 : length(input) for j = 1 : N-m+1 temp = input(i,j:j+m-1); A = []; for k = 1 : N-m+1 if k~=i dist = max(abs(temp-input(k,j:j+m-1))); if dist<=r A = [A;k]; end end end C(i,j) ...
Sample Entropy是Approximate Entropy(近似熵)的改进,用于评价波形前后部分之间的混乱程度, 熵越大,乱七八糟的波动越多,越不适合预测;熵越小,乱七八糟的波动越小,预测能力越强。 具体思想和实现如下: 思想Sample Entropy最终得到一个 -np.log(A/B) ,该值越小预测难度越小,所以A/B越大,预测难度越小。 A:...
Sample Entropy是Approximate Entropy(近似熵)的改进,用于评价波形前后部分之间的混乱程度, 熵越大,乱七八糟的波动越多,越不适合预测;熵越小,乱七八糟的波动越小,预测能力越强。 具体思想和实现如下: 思想 Sample Entropy最终得到一个 -np.log(A/B) ,该值越小预测难度越小,所以A/B越大,预测难度越小。
# https://en.wikipedia.org/wiki/Sample_entropydef SampEn(U, m, r):"""Compute Sample entropy"""def _maxdist(x_i, x_j):return max([abs(ua - va) for ua, va in zip(x_i, x_j)])def _phi(m):x = [[U[j] for j in range(i, i + m - 1 + 1)] for i in range(N ...
https://en.wikipedia.org/wiki/Sample_entropydef SampEn(U, m, r): """Compute Sample entropy""" def _maxdist(x_i, x_j): return max([abs(ua - va) for ua, va in zip(x_i, x_j)]) def _phi(m): x = [[U[j] for j in range(i, i + m - 1 + 1)] for i in range...
深度学习给制造业带来了重大变化,无论是制造业,医疗还是人力资源。 通过这一重大革命和概念验证,几乎每个行业都在尝试调整其业务模型以适应深度学习,但是它有一些主要要求,可能并不适合每个业务或行业。 阅读本节后,您将对深度学习的优缺点有适当的了解。 本节包括以下章节: 第1 章,“单样本学习简介” 一、单样本...
sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Get the silhouette coefficients for samples in cluster i and sort them cluster_silhouette_values = sample_silhouette_values[cluster_labels == i] ...
delta = 1e -7# 防止np.log(0)return-np.sum(t * np.log(y + delta))# 标签形式defcross_entropy_error(y, t):ify.ndim ==1: t = t.reshape(1, t.size) y = y.reshape(1, y.size) batch_size = y.shape[0]return-np.sum(np.log(y[np.arange(batch_size), t] +1e-7)) / ba...