# Calculates rotation matrix to euler angles# The result is the same as MATLAB except the order# of the euler angles ( x and z are swapped ).def rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = ...
python import numpy as np def rotation_matrix_to_euler_angles(R): """ 将旋转矩阵转换为欧拉角(ZYX顺序, 弧度单位) 参数: R (numpy.ndarray): 3x3旋转矩阵 返回: tuple: 包含欧拉角 (roll, pitch, yaw) 的元组, 单位为弧度 """ assert R.shape == (3, 3), "旋转矩阵必须是 3x3 的" yaw = ...
# 实现将旋转矩阵转换为欧拉角的函数defrotation_to_euler(rotation_matrix):# 确保旋转矩阵是合法的assertrotation_matrix.shape==(3,3),"输入不合法,请确保是3x3矩阵"# 计算欧拉角yaw=np.arctan2(rotation_matrix[1,0],rotation_matrix[0,0])# 偏航pitch=np.arcsin(-rotation_matrix[2,0])# 俯仰roll=np....
完整项目代码 importnumpyasnpfromscipy.spatial.transformimportRotationasRdefvalidate_matrix(matrix):ifmatrix.shape!=(3,3):raiseValueError("Invalid input: Matrix must be 3x3.")defrotation_matrix_to_euler_angles(rot_matrix):validate_matrix(rot_matrix)r=R.from_matrix(rot_matrix)returnr.as_euler('xy...
# roll, pitch, yaw = rotation_matrix_to_euler_angles(R) # print(f"绕 X 轴的角度 (roll): {roll:.2f}°") # print(f"绕 Y 轴的角度 (pitch): {pitch:.2f}°") # print(f"绕 Z 轴的角度 (yaw): {yaw:.2f}°")def rotation_matrix_to_quaternion(R): ...
计算欧拉角可以通过旋转矩阵来实现。在Python中,你可以使用NumPy库来进行矩阵运算和数学计算。首先,你需要导入NumPy库,然后使用相应的函数来进行计算。 假设你有一个3x3的旋转矩阵R,你可以使用以下代码来计算对应的欧拉角: python. import numpy as np. def rotation_matrix_to_euler_angles(R): sy = np.sqrt(R[...
rotateMatrixToEulerAngles2(RM) euler_angles = [-0.05366141770874149, -1.2561686529408898,1.6272221428848495] eulerAnglesToRotationMatrix(euler_angles) rotateToQuaternion(RM) 输出结果如下: 0.567+0.412i -0.419j+0.577k x:0.41198412875061946, y: -0.41923809520381, z:0.5770317346112972, w:0.567047506333421...
# Checks if a matrix is a valid rotation matrix. def isRotationMatrix(R): Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype=R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 # Calculates rotation matrix to euler angles # The ...
R=rotationVectorToMatrix(theta); cout<<"旋转矩阵是:\n"<<R<<endl; if(!isRotationMatirx(R)){ cout<<"旋转矩阵--->欧拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x顺序,与theta顺序是x,y,z } else{ assert(isRotationMatirx(R)); ...
bool isRotationMatrix(Mat &R) { Mat Rt; transpose(R, Rt); Mat shouldBeIdentity = Rt * R; Mat I = Mat::eye(3,3, shouldBeIdentity.type()); return norm(I, shouldBeIdentity) < 1e-6; } // Calculates rotation matrix to euler angles ...