| the imaginary part of a complex number | | real | the real part of a complex number 返回从数字或字符串 x 生成的浮点数。 如果实参是字符串: 它必须是包含十进制数字的字符串; 通常是 Python 整数或浮点数的字符串形式; 也可以是 ‘NaN’(非数字)、表示正负无穷大的字符串(“Infinity” 或“inf...
1 数学中复数有a+bi表示,python中复数是由一个实数和一个虚数组合构成,表示为:x+yj一个复数有一对有序浮点数 (x,y),其中 x 是实数部分,y 是虚数部分。2 我们可以通过help(a)命令来查看复数的帮助文档。Help on complex object:class complex(object)| complex(real[, imag]) -> complex number|| ...
| Data descriptors inherited fromint:| |denominator| the denominator of a rational number inlowest terms| |imag|the imaginary part of a complex number| |numerator| the numerator of a rational number inlowest terms| |real| the real part of a complex number bool 1. 2. 3. 4. 5. 6. 7....
the numerator of a rational number in lowest terms (45)real一个复数的实部 the real part of a complex number
python内置函数3-complex( Help on class complex in module __builtin__: class complex(object) | complex(real[, imag]) -> complex number | | Create a complex number from a real part and an optional imaginary part. | This is equivalent to (real + imag*1j) where imag defaults to 0....
使用内置的complex(real, imag)函数,其中real是实部,imag是虚部。 # 使用j创建复数 a = 1 + 1j # 使用complex函数创建复数 b = complex(3, 4) 复数对象有两个属性:.real和.imag,分别用于获取复数的实部和虚部。支持基本运算,包括加法、减法、乘法、除法等。 模和相位 模(Magnitude):复数的模可以使用abs(...
The complex number is a plus bj. a is the real part, b is the imaginary part, and j is case-sensitive. Its real and imaginary parts can be obtained using z.eal and z.imag, respectively.今天的分享就到这里了,如果您对文章有独特的想法,欢迎给我们留言。让我们相约明天,祝您今天过得开心...
The X-axis on the complex plane, also known as the Gauss plane or Argand diagram, represents the real part of a complex number, while the Y-axis represents its imaginary part.This fact leads to one of the coolest features of the complex data type in Python, which embodies a rudimentary ...
complex(re, [im])a complex number with real part re, imaginary part im. im defaults to zero. 注意: 小数部分被直接舍去;see functionsmath.floor()andmath.ceil()for well-defined conversions. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for No...
real,imag,conjugate() -> int存在的意义是兼容 complex 里的同名方法。分别返回 x, 0 和 x——即实部、虚部和共轭复数——可整数一定是实数,所以这仨并没有实际意义 numerator,denominator存在的意义是兼容 Rational 里的同名方法。分别返回 x 和 1——即 当作分数的分子和分母——分母永远是 1 ...