使用pandas中read_csv读取csv数据时,对于有表头的数据,将header设置为空(None),会报错:pandas_libs\parsers.pyx in pandas._libs.parsers.raise_parser_error()ParserError: Error tokenizing data. C error: Expected 4 fields in line 2, saw 5 查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头...
df = pd.read_csv('data_with_dates.csv', parse_dates=['date']) 自定义列名 使用header参数可以自定义列名,可以指定某一行作为列名,也可以自定义列名列表。 import pandas as pd # 使用第三行作为列名 df = pd.read_csv('data.csv', header=2) # 自定义列名 custom_columns = ['ID', 'Name', ...
pd.read_csv('girl.csv', delim_whitespace=True, names=["编号", "姓名", "地址", "日期"]) 1. 我们看到names适用于没有表头的情况,指定names没有指定header,那么header相当于None。一般来说,读取文件会有一个表头的,一般是第一行,但是有的文件只是数据而没有表头,那么这个时候我们就可以通过names手动指定...
print('用read_table读取csv文件:', df) df=pd.read_csv('D:/project/python_instruct/test_data2.csv', header=None) print('用read_csv读取无标题行的csv文件:', df) df=pd.read_csv('D:/project/python_instruct/test_data2.csv', names=['a', 'b', 'c', 'd', 'message']) print('用...
除了io参数之外,read_csv()函数还有许多其他参数,用于控制数据的读取和解析过程。 以下是一些常用的参数: sep:用于指定字段之间的分隔符,默认为逗号。 header:用于指定哪一行作为列名,默认为第一行。 skiprows:用于跳过指定的行数。 usecols:用于选择要读取的列。
data = pd.read_csv('D:/jupyter/data/mydata/vertex.csv', header = None) 按行读取: importcsvwithopen('../file.csv','r')asexcelfile: reader = csv.reader(excelfile)forrowinreader:print(row) 2.在某个位置插入一列,并指定列名 scibert_df.insert(0,'id',node['true_idx']) ...
其中,‘file.csv’ 是待读取的CSV文件的路径。读取CSV文件后,将其存储为一个DataFrame对象,这样可以方便地对数据进行操作和分析。 read_csv()函数还有一些可选参数,用于指定文件的编码、分隔符、行索引等信息。以下是一些常用的参数: sep:指定分隔符,默认为逗号。 header:指定哪一行作为列名,默认为0(第一行)。
read_csv() 函数用于从 csv 文件中检索数据。read_csv() 方法的语法是: pd.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None,usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,dtype=None, engine=None, converters=None, true_va...
import pandas as pd df2 = pd.read_csv('target.csv',encoding='utf-8',header=1) df2 4.header=-1时(可用于读取无表头CSV文件): df3 = pd.read_csv('target.csv',encoding='utf-8',header=-1) df3 以上就是python中csv设置表头的方法,大家可以根据不同的情况分别进行操作,对csv的设置有一个全面...