PIL读取的图片并不是直接的numpy.ndarray格式,需要进行转换 代码语言:javascript 复制 fromPILimportImageimportnumpyasnp img_PIL=Image.open(dirpath)#读取数据print("img_PIL:",img_PIL)img_PIL:<PIL.JpegImagePlugin.JpegImageFile image mode=RGBsize=2736x1856 at0x2202A8FC108>print("img_PIL:",type(img...
numpy.ndarray #Image is a NumPy array: mask = image < 87 image[mask]=255 plt.imshow(image, cmap='gray') NumPy 3、SciPy 像NumPy 一样, SciPy 是 Python 的一个核心科学计算模块,也可以用于图像的基本操作和处理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模块,它提供了在 n 维 NumPy 数组上...
import numpy as np from io import BytesIO f_path = '/home/devil/x.JPEG' img = Image.open(f_path) img_array = np.array(img.convert('RGB')) f_bytes = open(f_path, 'rb').read() img_array2 = Image.open(BytesIO(f_bytes)) img_array2 = np.asarray(img_array2, np.uint8) ...
import numpy as np # Create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print a # prints "array([[ 1, 2, 3], # [ 4, 5, 6], # [ 7, 8, 9], # [10, 11, 12]])" # Create an array of indic...
fromPILimportImageimportcv2importnumpy as npfromioimportBytesIO f_path='/home/devil/x.JPEG'img=Image.open(f_path) img_array= np.array(img.convert('RGB')) f_bytes= open(f_path,'rb').read() img_array2=Image.open(BytesIO(f_bytes)) ...
1 import cv2 as cv 2 import numpy as np 3 4 5 def get_image_info(image): 6 print(type(image)) 7 print(image.shape) 8 print(image.size) # 高、宽、通道数 9 print(image.dtype) # 字节位数占多数 高*宽*通道数 10 pixel_data = np.array(image) ...
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有...
import numpy as np a = np.array([1, 2, 3]) # Create a rank 1 array print type(a) # Prints "<type 'numpy.ndarray'>" print a.shape # Prints "(3,)" print a[0], a[1], a[2] # Prints "1 2 3" a[0] = 5 # Change an element of the array ...
import numpy as np np.array(((1,2),(3,4))) ''' 输出: array([[1, 2], [3, 4]]) ''' 还可以使用arange函数创建一维数字数组,用法类似python的range函数. import numpy as np np.arange(1,6) ''' 输出:array([1, 2, 3, 4, 5]) ''' 6、如何创建随机数组? numpy的random模块用来创...
df = pd.read_csv('data'csv').set_index('time') 比如要处理具体的数据,写成代码应该是这样子的。 df = pd.DataFrame( { "time": ["1960-01-01","1961-01-01","1962-01-01"], "Afghanistan": [1,2,3], "Angola": [2,3,4], ...