read_csv()函数还有一些可选参数,用于指定文件的编码、分隔符、行索引等信息。以下是一些常用的参数: sep:指定分隔符,默认为逗号。 header:指定哪一行作为列名,默认为0(第一行)。 encoding:指定文件的编码格式,默认为None。 index_col:指定某一列作为行索引,默认为None。 usecols:指定需要读取的列,默认为None(读...
pd.read_csv(data, index_col=False) # 不再使用首列作为索引 pd.read_csv(data, index_col=0) # 第几列是索引 pd.read_csv(data, index_col='年份') # 指定列名 pd.read_csv(data, index_col=['a','b']) # 多个索引 pd.read_csv(data, index_col=[0, 3]) # 按列索引指定多个索引 1....
df=pd.read_csv('D:/project/python_instruct/test_data2.csv', names=names, index_col='message') print('read_csv读取时指定索引:', df) parsed=pd.read_csv('D:/project/python_instruct/test_data3.csv', index_col=['key1', 'key2']) print('read_csv将多个列做成一个层次化索引:') print...
obj=pd.read_csv('testdata.csv',header=0,names=range(1,4)) 当设置 header=0 时,则认为csv文件数据第一行是列索引,将用新的列索引替换旧的列索引。 obj=pd.read_csv('testdata.csv',index_col=0,usecols=[1,2,3]) 当设置 index_col=0 时,则是csv文件数据的指定数据中的第一列是行索引,usecol...
index_col: int or sequence or False, default None 指定数据中哪一列作为Dataframe的行索引,也可以指定多列,形成层次索引,默认为None,即不指定行索引,这样系统会自动加上行索引(0-)。 更多有关参数解析参见:pandas系列 read_csv 与 to_csv 方法各参数详解(全,中文版) ...
在pandas库中,read_csv方法用于读取csv文件。通过设置index_col参数,可以指定将哪一列作为索引。如果不设置index_col参数,默认索引为数字索引。 importpandasaspd# 读取csv文件并设置第一列为索引df=pd.read_csv('data.csv',index_col=0)print(df) 1. ...
index_col: int or sequence or False, default None 用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。 如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。 usecols: array-like, default None ...
当使用Python的Pandas库导入CSV数据时,可以通过设定参数index_col来去除默认索引、使用CSV文件中的某一列作为数据框的索引,或者通过reset_index()方法来去除由Pandas自动创建的默认索引并生成一个新的整数序列索引。 为了去除默认索引,当使用pandas.read_csv()函数时,可以设置index_col=False。这会告诉Pandas不将第一列...
1.2如果我们想把某一列作为索引下标,则使用:index_col = [ 下标_列(作为下标的列) ] import pandas as pd data_path =r"F:\joyful-pandas-master\data\my_csv.csv" data = pd.read_csv(data_path, index_col=["col2", "col4"]) print(data) ...