importnumpyasnp num=0np.random.seed(0)while(num<5):print(np.random.rand(1,5))num+=1print('---') 看到,结果就不一样了,但是初始化第一行的结果还是一样的,这说明初始值一样 ,而且你会发现,无论你运行多少遍,有了随机种子,运行的结果都是一样的 但我们不需要随机种子的时候,把随机种子的赋值注...
在使用numpy时 ,有时需要用到随机数,并且想让生成的随机数在每次运行时都能得到相同的数组,这时可以使用random.seed(int i)函数,设置随机数种子。 下面用几个测试demo,感受下效果~(1)测试demo1 import pandas as pd import numpy as n
设置的seed()值仅一次有效 np.random.seed()参数问题 先看一段代码: import numpy as np random.seed(0) print(np.random.rand(2, 3)) np.random.seed(1) print(np.random.rand(2, 3)) np.random.seed(2) print(np.random.rand(2, 3)) 运行结果: [[0.5488135 0.71518937 0.60276338] [0.54488318 ...
import numpy as np def test_numpy_random_seed(seed=0, cnt=3): np.random.seed(seed) print("test numpy seed: ", seed) for _ in range(cnt): print(np.random.random()) print(np.random.randn(1, 5)) print(np.random.uniform(1, 10, 5)) print('\n') 多次运行以上的test_numpy_rando...
可以看到,在python生成多进程时会copy父进程中的numpy.random的状态,这其中也包括随机种子的状态; 如果子进程生成完成后,那么父进程中的numpy.random的状态是不会影响子进程的。 ===
而Python中的np.random.seed()函数,正是用来设置这个初始种子值的。 一、np.random.seed()的作用 np.random.seed()函数是NumPy库中的一个函数,用于设置随机数生成器的种子。当我们为np.random.seed()提供一个固定的数值时,随机数生成器会从这个数值开始,生成一系列确定的随机数。这样,每次运行代码时,只要种子...
defset_random_seed(seed):# 设置Python的随机种子 random.seed(seed)# 设置NumPy的随机种子 np.random.seed(seed)# 设置CPU的随机种子 torch.manual_seed(seed)# 设置当前GPU设备的随机种子 torch.cuda.manual_seed(seed)# 设置所有GPU设备的随机种子(如果使用多GPU) ...
python&numpy: random.seed(seed) np.random.seed(seed) cpu&gpu: torch.manual_seed(seed) # 为cpu设置随机种子 torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子 cudnn:(对结果影响不大,会影响性能) ...
np.random.seed(seed=None) 函数作用: 随机种子生成器,固定生成的随机数 如果使用相同的seed( )值,则每次生成的随即数都相同; 如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。 ''' # 指定seed = 1 np.random.seed(1) ...
NumPy提供了丰富的随机数生成方法,包括生成固定范围内的随机数、正态分布随机数等。以下为具体用法: 1. 设置随机数种子 随机数种子用于确保生成的随机数序列一致。通过设置种子,可以保证每次运行代码时生成的随机数相同。 importnumpyasnp# 设置随机数种子np.random.seed(666)# 生成随机数random_array=np.random.rand...