通过不断迭代更新Q(s,a)Q(s,a)的值,Q-Learning算法可以学习到最优策略π∗π∗下的状态-动作对的价值函数Q∗(s,a)Q∗(s,a)。这个过程不需要环境的动态模型,因此Q-Learning是一种无模型的强化学习算法。 1.2 Q-Learning解的推导 贝尔曼方程是动态规划中的核心原理,它将一个状态的价值分解为即时奖励...
Q-learning 的 python 实现 actionagentfunctionstatetable 通过前面的几篇文章可以知道,当我们要用 Q-learning 解决一个问题时,首先需要知道这个问题有多少个 state,每个 state 有多少 action,并且建立一个奖励表格 P,维度是 action * 4,这4列分别标记着采取每个 action 的概率,采取每个 action 下一步会到达的 ...
1. 初始化 Q 表:每个表格对应状态动作的 Q 值。这里就是一个H*W*4的表,4代表上下左右四个动作。 2. 选择动作: 根据 Q 表格选择最优动作或者以一定概率随机选择动作。 3. 执行动作,得到返回奖励(这里需要自定义,比如到达目标给的大的reward,撞墙给个小的reward)和下一个状态。 4. 更新 Q 表: 根据规则...
按照第一部分Q学习的理论,我们把每个房间抽象为一个状态,选择进入哪号房间作为动作,把状态图和即时奖励值放到下面的奖励值表“回报矩阵R”中:(-1表示不可选择的动作,两个状态间没有连接) 现在我们将添加一个类似的矩阵“Q”给我们agent的大脑,代表了通过经验学到的东西的记忆。 矩阵Q的行表示agent的当前状态,列...
强化学习-Q-learning QLearning是强化学习算法中value-based 的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大...
importmatplotlib.pyplotaspltfromQlearningimportQlearning#Chos: 1 随机初始化地图; 0 导入固定地图chos=1node_num=36#当选择随机初始化地图时,自动随机生成node_num-1个城市# 创建对象,初始化节点坐标,计算每两点距离qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node...
2 Q-Learning决策 围绕这张图,我们来解释Q-Learning的决策过程,假设我们已经学习好了行为准则: 状态s1表示正在写作业,我们有行为a1—看电视和行为a2—写作业可以选择,根据之前的经验,选择a2继续写作业带来的潜在奖励要比a2看电视高,反映在Q表中就是Q(s1, a1)=-2 要小于 Q(s1, a2)=1,因此,我们选择行为a2...
摘要:本文深入研究了基于Q-Learning的D2D(Device-to-Device)通信功率控制算法。首先阐述了D2D通信的概念、优势及面临的挑战,特别是功率控制的必要性。接着详细介绍了Q-Learning算法原理及其在D2D通信功率控制中的应用方式。通过理论分析与仿真实验,验证了该算法在提升系统性能、降低干扰等方面的有效性,并与其他传统算法进...
三、Q-learning求解物流配送路径规划 3.1部分Python代码 可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。 importmatplotlib.pyplotaspltfromQlearningimportQlearning#Chos: 1 随机初始化地图; 0 导入固定地图chos=1node_num=46#当选择随机初始化地图时,自动随机生成node_num-1个城市# 创建对象...
咱们这里应用最常见且通用的 Q -Learning 来解决这个问题,因为它有动作 - 状态对矩阵,能够帮忙确定最佳的动作。在寻找图中最短门路的状况下,Q-Learning 能够通过迭代更新每个状态 - 动作对的 q 值来确定两个节点之间的最优门路。 上图为 q 值的演示。