线性回归(Linear Regression)是是指在统计学中是指在统计学中用来描述一个或者多个自变量和一个因变量之间线性关系的回归模型 公式如下: y=Xβ+ε 其中 y = (y1y2⋮yn) X = (1x11x12⋯x1m1x21x22⋯x2m⋮⋮⋮⋱⋮1xn1xn2⋯xnm) β = (β0β1⋮βm)$ ε = (ε1ε2⋮εn...
建模 '''create a model and fit it'''model = LinearRegression() model = model.fit(x, y)print(model)# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) 验证模型的拟合度 '''get result y = b0 + b1x '''r_sq = model.score(x, y)print('coefficient of...
2.3 class LinearRegression(): 构建实现线性回归的类 2.3.1 __init__() def __init__(self, n_iterations=3000, learning_rate=0.00005, regularization=None, gradient=True): self.n_iterations = n_iterations self.learning_rate = learning_rate self.gradient = gradient if regularization == None: se...
Once your model is created, then you can apply .fit() on it: Python >>> results = model.fit() By calling .fit(), you obtain the variable results, which is an instance of the class statsmodels.regression.linear_model.RegressionResultsWrapper. This object holds a lot of information abo...
linear regression步骤: 1.导入数据 2.将数据分为训练集合测试集 (linear regression 分为x_train, x_text, y_train, y_test) 3.导入线性回归算法 利用训练集计算出模型参数 4.模型检验 利用测试集测试真实值和预测值的差异 (用x_test计算出y_predict,与y_test做比较,计算误差) ...
# 创建线性回归对象model=LinearRegression()# 训练模型model.fit(X_train,y_train) 1. 2. 3. 4. 6. 预测 利用训练好的模型对测试集进行预测。 # 使用模型进行预测y_pred=model.predict(X_test) 1. 2. 7. 评估模型性能 使用均方误差(MSE)来评估模型性能。
线性回归(Linear Regression)是一种基本的预测分析方法,它通过拟合数据点来建立因变量(目标变量)与一个或多个自变量之间的关系模型。线性回归假设这种关系是线性的,并试图找到一条直线(简单线性回归)或超平面(多元线性回归),使得这条直线或超平面与实际数据点之间的误差最小化。
我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: ...
因此本节我们将重点介绍线性回归(Linear Regression) 01 线性回归和最小二乘法介绍 线性回归理论: 1.假设自变量X和因变量Y具有线性关系,要想预测新的y值,需要使用历史的Y与X训练数据,通过线性方程建立机器学习模型。 2.如果变量X只有一个为简单线性回归,有多个为多元线性回归。
Question 1: Linear Regression (10 marks)The data listed below come from an experiment to verify Ohms law. The voltage across a resistor (thedependent variable) was measured as a function of the current flowing (the independent variable). Theprecision of the voltmeter was 0.01mV, and the ...