df=pd.read_csv('data_with_missing.csv',header=None)df=df.replace('',pd.NA)# 将空字符串替换为NAdf=df.dropna()# 删除包含NA的行 3.4 读取大文件 对于大文件,可以使用chunksize参数分块读取: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 ...
data2= pd.read_csv('rating.csv',header=None)print("***为各个字段取名***") data3= pd.read_csv('rating.csv',names=['user_id','book_id','rating'])print("***将某一字段设为索引***") data3= pd.read_csv('rating.csv', names=['user_id','book_id','rating'], index_col="us...
首先,以csv文件为例: AI检测代码解析 # 没有标题行 pd.read_csv("examples/ex2.csv", header=None) # 自定义标题行 pd.read_csv("examples/ex2.csv", names=["a", "b","message"]) # 自定义分隔符,取代默认的逗号 result = pd.read_csv("examples/ex3.txt", sep="\s+") # 迭代处理大文件 ...
pandas.read_csv参数chunksize通过指定一个分块大小(每次读取多少行)来读取大数据文件,可避免一次性读取内存不足,返回的是一个可迭代对象TextFileReader。 importpandasaspd reader = pd.read_csv('data.csv', sep=',', chunksize=10)# <pandas.io.parsers.TextFileReader at 0x1fc81f905e0>forchunkinreader:# ...
data5 = pd.read_csv('data.csv',header=None) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入...
不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。 返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。 squeeze: boolean, default False
1. 一网打尽:读取CSV data = pd.read_csv('data.csv') 这一行代码,就像渔网一样,把CSV里的所有数据捞到一个DataFrame中。DataFrame,就是你的数据工作台。 2. 快速浏览:头尾看看 print(data.head())# 前五行print(data.tail())# 后五行 这就像快速翻阅书的前几页和最后几页,帮助你了解内容的概要。
chunksize: 每个块的行数,用于逐块读取文件。 compression: 压缩格式,例如 'gzip' 或 'xz' filepath_or_buffer要读取的文件路径或对象 filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]可以接收3种类型,文件路径,读取文件的bytes, 读取文件的str。
read_csv() 函数用于从 csv 文件中检索数据。read_csv() 方法的语法是: pd.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None,usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,dtype=None, engine=None, converters=None, true_va...