在Python中使用Pandas库重置索引(Reset Index)是一个常见的操作,可以帮助我们重新设定DataFrame的索引。以下是关于如何重置索引的详细步骤和解释: 导入Pandas库: 首先,我们需要导入Pandas库,这是进行数据操作的基础。 python import pandas as pd 创建或加载DataFrame: 我们可以创建一个新的DataFrame,或者加载一个已存在...
EN在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进...
import pandas as pd df = pd.DataFrame({'Col-1': [1, 3, 5], 'Col-2': [5, 7, 9]}, index=['A', 'B', 'C']) print(df) df1 = df.reset_index() print(df1) df.reset_index(drop=True, inplace=True) print(df) Output: Col-1 Col-2 A 1 5 B 3 7 C 5 9 index Col-...
Pandasreset_index()是一个重置数据帧索引的方法。 reset_index()方法设置一个从0到数据长度的整数列表作为索引。 语法: DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”) 参数: level: int, string or a list to select and remove passed column from index. dr...
1、set_index() 作用:DataFrame可以通过set_index方法,将普通列设置为单索引/复合索引。 格式:DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 参数含义: keys:列标签或列标签/数组列表,需要设置为索引的普通列 ...
df.set_index(“date”, inplace=True) 如果要保留将要被设置为索引的列,可以设置drop=False。 df.set_index(“date”, drop=False) 3. 一些操作后重置索引 在处理 DataFrame 时,某些操作(例如删除行、索引选择等)将会生成原始索引的子集,这样默认的数字索引排序就乱了。如要重新生成连续索引,可以使用reset_in...
要充分利用pandas.DataFrame的reset_index,首先理解其基本用法。当你调用reset_index时,可以选择参数`drop=True`,这会删除原来的索引列;如果`drop=False`(默认值),则会在DataFrame中添加一个新的列,原有的索引变为列值。此外,还可以通过`inplace=True`来直接在原始DataFrame上进行修改,否则会...
在pandas中,常用set_index()和reset_index()这两个方法进行索引设置。 一、set_index方法 1.介绍 set_index()方法将DataFrame中的列转化为行索引。 转换之后,原来的列将不见,可以通过设置drop保留原来的列。 使用语法为: DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=...
下面我们使用reset_index进行索引重置: 可以看到,此时数据表增加了一列新的索引,同时原来的索引被被保留了下来。 如果我们想直接使用重置后的索引,不保留原来的index,就可以加上(drop = True),如下所示: city.reset_index(drop=True) 也就是说这个时候,原来被我们删除的那行数据已经没了,但是索引没有变乱。 这...
1. 安装pandas 2. 数据导入 3. 数据预览 4. 数据筛选 5. 数据排序 6. 分组聚合 7. 数据可视化 ...