pd.pivot_table(df, values="bonus", index="name", columns="year", aggfunc=np.sum) year20122013name alice10.0NaN bob15.020.0 我们可以选择通过传入fill_value参数来用我们自己的值填充这些NaN: pd.pivot_table(df, values="bonus", index="name", columns="year", aggfunc=np.sum, fill_value=-1)...
3、创建数据透视表: 使用pandas的pivot_table()函数可以轻松创建数据透视表。该函数的主要参数包括:index(用于分组的列)、columns(用于创建列的列)、values(用于聚合计算的列)和aggfunc(聚合函数,默认为求平均值)。pivot_table = pd.pivot_table(df, index='category', columns='year', values='sales',...
Pandas的pivot_table函数是一个强大的数据分析工具,它可以帮助我们快速地对数据进行汇总和重塑。通过灵活使用其各种参数,我们可以轻松地创建复杂的数据透视表,从而更好地理解和分析数据。 在实际应用中,pivot_table常用于销售数据分析、财务报表生成、用户行为分析等多个领域。掌握这个函数将大大提高您的数据分析效率。 ...
python:用Pandas透视表处理数据 数据 使用pandas中pivot_table的一个挑战是,你需要确保你理解你的数据,并清楚地知道你想通过透视表解决什么问题。其实,虽然pivot_table看起来只是一个简单的函数,但是它能够快速地对数据进行强大的分析。 在本文中,我将会跟踪一个销售渠道(也称为漏斗)。基本的问题是,一些销售周期很...
pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数为求和,values是在两个轴(index和columns)确定后的取值...
Excel中有一个强大的功能 —— 数据透视表(pivot table)。 利用数据透视表可以快速的进行分类汇总,自由组合字段快速计算,而这些只需要拖拉拽就可以实现。 典型的数据格式是扁平的,只包含行和列,不方便总结信息。 而透视表可以快速抽取有用的信息。 在Pandas中,可以利用pivot_table函数实现该功能。
pandas.DataFrame.pivot_table 是 Pandas 中用于数据透视表(pivot table)的函数,可以通过对数据进行聚合、重塑和分组来创建一个新的 DataFrame。通过 pivot_table 方法,可以对数据进行汇总、统计和重组,类似于 Excel 中的透视表功能。本文主要介绍一下Pandas中pandas.DataFrame.pivot_table方法的使用。
pivot_table有四个最重要的参数index、values、columns、aggfunc,本文以这四个参数为中心讲解pivot操作是如何进行。 2.1 读取数据 import pandasas pd import numpyas np df = pd.read_csv('h:/James_Harden.csv',encoding='utf8') df.tail() 数据格式如下: ...
透视表pivot_table()是非常强大的汇总运算函数。 在SQL语句和excel中透视表也是非常普遍的。 我也是忍了很久才留到现在总结。 废话少说,直接上图: 常用的基本格式如下: values 是要进行汇总、统计运算的。可以…
Python Pandas pivot_table 透视表 计数 pivot_table函数 pivot_table(data=表格,index=行,columns=列,values=值,aggfunc=计数函数,margins=True# 汇总统计) 1. 2. 3. 4. 5. 6. 7. 8. aggfunc调用函数, 不带括号 不带括号时, 调用的是这个函数本身, 是一个函数对象...