Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。 DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame对象
Pandas的DataFrame也可以轻松地进行数据可视化。例如,可以使用pandas的内置函数plot()对DataFrame中的特定列进行绘图。下面是一个简单的例子:# 绘制age列的直方图 df['age'].plot(kind='hist')此外,也可以使用matplotlib库进行更复杂的数据可视化。例如,可以使用pandas的pivot_table()函数和matplotlib的heatmap()函...
import pandas as pd Pandas中的数据结构 Pandas中包含三种数据结构:Series、DataFrame和Panel,中文翻译过来就是相当于序列、数据框和面板。 这么理解可能有点抽象,但是我们将其可以类比为: Series对应数组 DataFrame对应表格 Panel对应Excel中的多表单Sheet Series 它是一种一维数组对象,包含一个值序列,还有索引功能。 1...
print(pivot_table_filled) 5、添加小计 在创建数据透视表时,可以使用margins=True添加小计。 参考文档:Python pandas.DataFrame.pivot_table函数方法的使用 import pandas as pd import numpy as np # 创建一个示例 DataFrame df = pd.DataFrame({ 'Category': ['A', 'A', 'B', 'B', 'C', 'C'], '...
#而上面的结果是一个DataFrame 对象。 ''' #统计每个销售区域每个月的销售总额,也可以使用pivot_table函数 df1['月份'] = df1['销售日期'].dt.month print(pandas.pivot_table(df1, index=['销售区域', '月份'], values='销售额', aggfunc='sum')) ''' 销售额 销售区域 月份 上海1 1679125 2 1689...
Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。 DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame对象的横向索引或者列名,values用来指定转换...
首先导入需要使用的numpy和pandas功能库,numpy用于数值计算,Pandas是基于numpy构建的用于科学计算的功能库,pandas.pivot_table是Pandas库(pd)中的函数。然后读取Lending Club数据 ,并生成名为lc的数据表。 import pandas as pd import numpy as np lc=pd.DataFrame(pd.read_csv('LoanStats3a.csv',header=1)) ...
其中,dataFrame1等表示要合并的DataFrame数据集合;ignore_index=True表示合并之后的重新建立索引。其返回值也是DataFrame类型。 concat()函数和append()函数的功能非常相似。 例: import pandas #导入pandas模块 from pandas import read_excel #导入read_execel ...
二. DataFrame的基本概念 DataFrame是Pandas库中最常用的数据结构之一,它可以看作是一种二维的表格数据...
Python pandas.DataFrame.pivot函数方法的使用 Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境...