在Pandas Python中删除列可以使用drop()函数。drop()函数可以删除指定的列,并返回一个新的DataFrame对象。该函数的语法如下: 代码语言:txt 复制 df.drop(columns=['column_name'], inplace=True) 其中,df是要操作的DataFrame对象,column_name是要删除的列名。通过设置inplace
可以先通过列索引获取列名,然后使用drop()方法删除。 import pandas as pd 创建示例数据框 data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) 获取索引为1的列名 column_name = df.columns[1] 删除索引为1的列 df.drop(columns=[column_name], in...
例如,假设要删除名为column1的列中值小于5的行,可以执行以下代码: df = df[df['column1'] >= 5] 如果要使用多个条件进行筛选,可以使用括号将每个条件括起来。例如,要同时满足两个条件,可以这样写: df = df[(df['column1'] >= 5) & (df['column2'] != 'NaN')] 以上是在Pandas中删除数据的4种...
简介: python进行数据处理——pandas的drop函数 删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据 清理无效数据 df[df.isnull()] #返回的是个true或false的Series对象(掩码对象),进而筛选出我们需要的特定数据。 df[df.notnull()] df....
import pandas as pd #读取数据 df = pd.read_excel(r'C:\Users\XXXXXX\Desktop\pandas练习文档.xlsx',sheet_name=0) #删除全为空的列。 df = df.dropna(axis=0,subset=['地区','年份'],how='any') print(df) 3、df.drop() 3.1 df.drop()参数详解 df.drop( labels=None, #要删除的行或列...
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1; inp...
# 第一种方法下删除column一定要指定axis=1,否则会报错 >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) A B C D 2 8 9 10 11 >>> df.drop(index=[0, 1])A B C D ...
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一...
# 第一种方法下删除column一定要指定axis=1,否则会报错 >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) A B C D 2 8 9 10 11 >>> df.drop(index=[0, 1]) ...
df.drop(2, axis=0, inplace=True) ``` 这将从原始 DataFrame 中删除索引为 2 的行。 2.删除列: 要删除 DataFrame 中的列,可以使用 drop( 方法并将 axis 参数设置为 1 或 'columns'。例如,假设我们有一个名为 df 的 DataFrame,要删除名为 'column1' 的列,可以使用以下代码: ``` df.drop('colum...