我得到 ValueError: cannot convert float NaN to integer for following: df = pandas.read_csv('zoom11.csv') df[['x']] = df[['x']].astype(int) “x”是 csv 文件中的一列,我无法在文件中发现任何 浮点NaN ,而且我不明白错误或为什么会得到它。 当我将
pandas 0.24+ 转换带有缺失值的数字的解决方案: df = pd.DataFrame({'column name':[7500000.0,7500000.0, np.nan]}) print (df['column name']) 0 7500000.0 1 7500000.0 2 NaN Name: column name, dtype: float64 df['column name'] = df['column name'].astype(np.int64) ValueError:无法将非有限...
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType' >>> df['B'].astype(int) ValueError ... ValueError: Cannot convert non-finite values (NA or inf) to integer >>> df['C'].astype(int) ValueError ... ValueError: Cannot convert non-finite ...
importpandasaspd# 创建一个示例的DataFramedata={'A':['1','2','3','4'],'B':['5.0','6.5','7.9','8.1'],}df=pd.DataFrame(data)# 输出原始DataFrameprint("原始DataFrame:")print(df)# 方法一:使用astype()方法进行转换df['A']=df['A'].astype(int)df['B']=df['B'].astype(float)....
1. Pandas中的数据类型 在Pandas中,数据主要存储在DataFrame和Series两种数据结构中。DataFrame是一个二维表格,类似于Excel中的工作表,而Series则是一维数组,类似于Excel中的一列数据。 Pandas支持多种数据类型,主要包括: 数值类型:int、float、bool等。 字符串类型:object(在Pandas中,字符串通常被存储为object类型)。
Pandas是基于NumPy的数据分析模块,它提供了大量的数据分析会用到的工具,可以说Pnadas是Python能成为强大数据分析工具的重要原因之一。 导入方式: import pandas as pd Pandas中的数据结构 Pandas中包含三种数据结构:Series、DataFrame和Panel,中文翻译过来就是相当于序列、数据框和面板。
运行上述代码,结果程序抛出异常:IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer,这个异常告诉我们 Pandas 中的空值 NaN 不可以被转为整数,实际上正是如此,NaN 的类型是 float,缺失无法被转为整数型,所以转换不会成功,程序自然就会报错。
int 整数类型 float 浮点数类型 string 字符串类型 二、加载数据时指定数据类型 最简单的加载数据:pd.DataFrame(data)和pd.read_csv(file_name) # 读取数据时指定importpandasaspd df = pd.read_csv('data.csv', dtype={'a':'string','b':'int64'})# 创建 DataFrame 类型数据时通过 dtype 参数设定df =...
import pandas as pd 创建气温数据序列 🌡️ temperatures = pd.Series([22.5, 23.1, 24.8, 21.3], index=['周一', '周二', '周三', '周四'], name='城市气温') print(temperatures) 周一22.5 周二23.1 周三24.8 周四21.3 Name: 城市气温, dtype: float64 ...
简介:Python之pandas:数据类型变换之object、category、bool、int32、int64、float64以及数据类型标准化之详细攻略 知识点 在pandas中,如果某个字段下,数据类型不一致导致整个字段类型不相同,可以进行字段类型转换!,在pandas中,进行数据类型转换非常简单,只需要使用astype函数即可!