import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') # 插入列 df.insert(loc=2, column='爱好', value=None) # 保存修改后的DataFrame到新的Excel文件 df.to_excel('结果.xlsx', index=False) test() 3、插入多列 假设我需要在D列(班级)后面插入5列,表头名...
# Importing Pandas as pdimportpandasaspd# Importing numpy as npimportnumpyasnp# Creating a dataframe# Setting the seed value to re-generate the result.np.random.seed(25)df=pd.DataFrame(np.random.rand(10,3),columns=['A','B','C'])# np.random.rand(10, 3) has generated a# random 2-...
import pandas as pd # 创建示例数据框 data = {'A': [1, 2, 3, 4], 'B': [10, ...
1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。 2、使用rename方法(推荐): DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None ) 参数介绍: mapper,index,columns:可以任选其一使用,可以是将...
5.2 基本功能 (1)重新索引 - 方法reindex 方法reindex是pandas对象地一个重要方法,其作用是:创建一个新对象,它地数据符合新地索引。 如,对下面的Series数据按新索引进行重排: 根据新索引重排后的结果如下,当某个索引值不存在,就会在原来的基础上引入缺失值NaN: 利
pip install pandas 2、数据对象的创建 通过Series()函数包裹一维数组可以创建Series对象,其中数组的元素可以是各种类型。 通过DataFrame()函数包裹二维数组可以创建一个DataFrame对象,可以通过参数index、columns指定行标签和列标签。也可以通过python的字典类型初始化DataFrame,其键名默认为列标签 ...
三.pandas数据结构之DataFrame DataFrame是一个[表格型]的数据结构.DataFrame由按一定顺序排列的多列数据组成.设计之初也是将Series的使用场景从一维拓展到多维.DataFrame既有的行索引,又有列索引 行索引:index 列索引:columns 值:values 1)DataFrame的创建
index是行索引,即每一行的名字;columns是列索引,即每一列的名字。建立数据帧时行索引和列索引都需要以列表的形式传入。 import pandas as pd df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=['row_0', 'row_1'], columns=['col_0', 'col_1', 'col_2']) ...
import pandas as pd df = pd.read_csv(s, sep=';', header=None) df_t = df.T df_t.iloc[0:1, 0:1] = 'Time Point' df_t.columns = df_t.iloc[0] df_new = df_t.drop(0) pdb = pd.read_csv(d, sep=';') newpd = pdb.append(df_new) ...
df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 6040 entries, 0 to 6039 Data columns (total 5 columns): UserID 6040 non-null int64 Gender 6040 non-null object Age 6040 non-null int64 Occupation 6040 non-null int64 Zip-code 6040 non-null object dtypes: int64(3), object(2...