iloc的使用方式为df.iloc[row_index, col_index],也是核心的筛选方式,其原理与loc方法非常相似,只是将原来通过行名列名筛选的方式变成了行索引数和列索引数筛选,需要注意iloc方法筛选数据用列表形式筛选数据是左闭右开的,此处仅介绍以下结合numpy的筛选 df.iloc[:,np.r_[0:3,4]]# 筛选第0列到第3列以及第四...
只搜索一个字符串是否在列属性为list的DataFrame中 根据原理,是通过生成一列True or False来对每行进行判断,这时就可以使用map函数完成对 in 的操作 df_test=pd.DataFrame([[1,['aaa','bbb']],[1,['aaa','ccc']]],columns=['str','list']) str list 0 1 [aaa, bbb] 1 1 [aaa, ccc] 初始化...
pandas 官网 原文连接: https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html 我会在原文基础上进行增删改,添加一些注释。 常见用法 if-then 对一列数据执行 if-then / if-then-else 操作,把计算结果赋值给一列或多列。 AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40...
df['Order Quantity'].replace(5, 'equals 5', inplace=True) 总结 Python pandas提供了很多的函数和技术来选择和过滤DataFrame中的数据。比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,...
Copy# 加载数据 import pandas as pd # 数据是之前在cnblog上抓取的部分文章信息 df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8') df.head(3) 筛选列#相当于SQL中的select所有列#df df[:]某一列#df.col_name 列名必须是字符串格式且不含空格 df['col_name'] 第N列, ...
方法一:pandas没有isnotin,我们自己定义一个。 a.定义函数: b.运用函数: 方法二:使用列表的not in方法 + 简单函数 这种方法类似于第一种,不过更简洁。 方法三:使用merge a.先将不想要的筛选出来成一个DataFrame b.将两个DataFrame使用merge合并 c. 通过isnull筛选空值,筛选出我们想要的。
如何实现 SQL 的 IN 和NOT IN 的等价物? 我有一个包含所需值的列表。这是场景: df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']}) countries_to_keep = ['UK', 'China'] # pseudo-code: df[df['country'] not in countries_to_keep] 我目前的做法如下: df = pd.Dat...
import pandasaspd # 读写csv文件 df= pd.read_csv("supplier_data.csv") df.to_csv("supplier_data_write.csv",index=None) (2)筛选特定的行 #Supplier Nmae列中姓名包含'Z',或者Cost列中的值大于600 print(df[df["Supplier Name"].str.contains('Z')]) ...
# fillna 就是pandas里面自带的对空缺值进行填充的函数 data['对外投资金额'].fillna(0, inplace=True...
pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型 ,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。