这是因为它的直方图不像我们在前面的案例中所看到的那样局限于特定区域(尝试绘制输入图像的直方图,您将获得更多的直觉)。 因此,为了解决这个问题,使用了自适应直方图均衡。在这种情况下,图像被分成称为“tiles”的小块(在OpenCV中,tileSize默认为8x8)。然后,像往常一样对这些块中的每一个进行直方图均衡。因此,在较...
全局直方图均衡话后比较亮或暗的地方细节会丢失,可以用自适应直方图均衡化解决。首先,图像会分成很多小块,小块称为tiles(opencv中是8*8),然后对每个小块进行直方图均衡化。但是噪声会被放大,通常用对比度限制来避免这种情况。最后,为了去除每一个小块之间的边界,再用双线性插值进行拼接。 opencv中提供了自适应直方图...
步骤5:显示均衡化后的图像 最后,我们使用OpenCV库的imshow函数来显示均衡化后的图像。 cv2.imshow('Equalized Image',output_image)cv2.waitKey(0)cv2.destroyAllWindows() 1. 2. 3. 总结 在本篇文章中,我们学习了如何使用Python实现彩色图像的自适应直方图均值化。我们首先加载图像,然后将其转换为Lab颜色空间,并...
限制对比度的自适应直方图均衡化 1.算法简介 AHE是一种用来改善图像对比度的图像处理技术,它与传统的(普通)直方图均衡相比,不同点主要在于,AHE通过计算图像每一个显著区域的直方图,来重新分布图像的亮度值,因此它更适合于用来改善图像的局部对比度,以及增强图像边缘信息,利于分割。 但是,AHE有一个缺陷,就是他在增强...
前面讲到的自适应直方图均衡化的实现方法首先是将图像划分成不重叠的区域块,让后对每个块分别进行直方图均衡化处理。如果在图像有噪声的情况下这样处理,在每个被分割的小区域块中的噪声就会被放大。 为了避免噪声对图像均衡化的影响,这里使用了限制对比度的自适应直方图均衡化来处理图像的直方图均衡化。
具体的python实现限制对比度的自适应直方图均衡化代码如下: 其中默认设置的“限制对比度”为40,块的大小为8X8 程序运行后的效果如下图所示: 本文摘自异步社区,作者:黑夜探路人,作品:《OpenCV使用python实现限制对比度的自适应直方图均衡化》,未经授权,禁止转载。
前面讲到的自适应直方图均衡化的实现方法首先是将图像划分成不重叠的区域块,让后对每个块分别进行直方图均衡化处理。如果在图像有噪声的情况下这样处理,在每个被分割的小区域块中的噪声就会被放大。 为了避免噪声对图像均衡化的影响,这里使用了限制对比度的自适应直方图均衡化来处理图像的直方图均衡化。
2.1 全局直方图均衡化与自适应均衡化 代码语言:javascript 复制 importcv2importnumpyasnp img=cv2.imread('0002.jpg',0)img1=cv2.equalizeHist(img)# 全局直方图均衡化 clahe=cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))# 自适应直方图均衡化 ...
具体的python实现限制对比度的自适应直方图均衡化代码如下: 其中默认设置的“限制对比度”为40,块的大小为8X8 程序运行后的效果如下图所示: 本文摘自异步社区,作者:黑夜探路人,作品:《OpenCV使用python实现限制对比度的自适应直方图均衡化》,未经授权,禁止转载。
【摘要】 限制对比度的直方图均衡化的处理方式是先为直方图设置一个阈值,该阈值为限制对比度值,超过该阈值的值会被裁剪,然后裁剪的部分会均匀的分布到其他值上,这样就重构了直方图,接下来就可以用重构后的直方图来进行接下来的均衡化操作了。 前面讲到的自适应直方图均衡化的实现方法首先是将图像划分成不重叠的区域块...