4.1、Opencv函数 4.2、自定义函数 图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合,即对图像中的目标、背景进行标记、定位,然后将目标从背景或其他伪目标中分离出来。 1、阈值分割 若图像中目标和背景具有明显不同的灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割,那么可以用阈值分割...
考虑到图像的孔隙,首先使用低通滤波器平滑图像,这将有助于平滑图像中的高频噪声。低通滤波器的目的是降低图像的变化率。 如果将每个像素替换为该图像周围像素的均值,这样就可以平滑并替代那些强度变化明显的区域。 对模糊图像二值化,顾名思义就是把图像数值以某一边界分成两种数值,梯度图像中不大于90的任何像素都设置...
图像分割是从图像处理到图像分析的关键步骤,在目标检测、特征提取、图像识别等领域具有广泛应用。OpenCV是一个强大的计算机视觉库,提供了多种图像分割方法。本文将详细介绍如何使用Python和OpenCV进行基于像素点的图像分割,包括阈值分割、自适应阈值分割、Otsu's二值化、分水岭算法、GrabCut算法、SLIC超像素分割和基于深度...
图像分割:将前景物体从背景中提取出来。 图像分割分为传统图像分割和基于深度学习的图像分割。 传统图像分割有:分水岭算法,grabcut算法,meanshift算法,背景抠出等。 1 分水岭算法 分水岭算法是基于图像形态学和图像结构的来实现的一种分割方法。 在没有背景模板可以用的情况下,分水岭算法首先计算图像的梯度(如查找轮...
假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压缩图像颜色,实现图像颜色层级分割。 在OpenCV中,Kmeans()函数原型如下所示:...
K-Means 聚类是一种无监督机器学习算法,旨在将N 个观测值划分为K 个聚类,其中每个观测值都属于具有最近均值的聚类。集群是指由于某些相似性而聚合在一起的数据点的集合。对于图像分割,这里的簇是不同的图像颜色。 我们使用的环境是pip install opencv-python numpy matplotlib ...
这是opencv官方的图像分割实例。 import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('003.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) print(thresh.shape) # 噪声...
使用Python和OpenCV库实现阈值分割,首先需要安装OpenCV库,然后读取图像,将图像转换为灰度图,接着使用cv2.threshold()函数进行阈值分割,最后显示分割后的图像。 阈值分割是图像处理中的一种基本技术,它通过将图像像素值与一个或多个阈值进行比较,将图像分割成几个部分,在Python中,我们可以使用OpenCV库来实现阈值分割。
OpenCV采用了基于掩模的分水岭算法,在这种算法中我们要设置那些山谷点会汇合,那些不会。这是一种交互式的图像分割,我们要做的就是给我们已知的对象打上不同的标签。如果某个区域肯定是前景或对象,就使用某个颜色(或灰度值)标签标记它。如果某个区域肯定不是对象而是背景就使用另外一个颜色标签标记。而剩下的不能...