这里讨论的axis主要是numpy中定义的axis,pandas基于numpy,保留了numpy对axis的用法。以drop函数为例,它的axis默认为0,表示删除行。mean函数的axis默认为None,如果不填写axis,则会按axis=0执行计算每一列的均值。concat函数的axis默认为0,表示纵向合并数据。接下来,我们来看这些函数实现时具体的结果。
这里讨论的axis主要是numpy中定义的axis,pandas基于numpy,保留了numpy对axis的用法。 1、drop删除函数 DataFrame.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')# axis{0 or ‘index’, 1 or ‘columns’}, default 0 drop函数的axis默认为0,表示删除行。 2、me...
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)#a:数组(不是数组就转为数组)#axis:可选(不选择就是全部数的平均值)为0求各列平均值,为1求各行平均值#dtype数据类型,可选,用于计算平均值的类型。对于整数输入,默认float64; 对于浮点输入,它与输入dtype相同。#ndarray,可选,放置...
当设置为axis=0时,操作是跨行(纵向)执行的,而当设置为axis=1时,操作是跨列(横向)执行的。这种设计最初可能会导致一些混淆,但其实是基于数据结构的形状和操作的逻辑。 要理解这种不同,我们首先要知道,在NumPy或Pandas等库中,数据通常以二维数组或DataFrame形式出现。这些数据结构可以类比于Excel中的工作表,其中"0...
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>) #a:数组(不是数组就转为数组) #axis:可选(不选择就是全部数的平均值)为0求各列平均值,为1求各行平均值 #dtype数据类型,可选,用于计算平均值的类型。对于整数输入,默认float64; 对于浮点输入,它与输入dtype相同。
代码运行次数:0 运行 AI代码解释 print("整体的均值:",np.mean(a))# 整体的均值print("每一列的均值:",np.mean(a,axis=0))# 每一列的均值print("每一行的均值:",np.mean(a,axis=1))# 每一行的均值 分别计算整体的标准差、每一列的标准差和每一行的标准差: ...
Python Numpy轴的图形表示 当我们用三个下标对A进行索引时,每个下标对应三个轴上的数值,例如当我们用A[1,2,3]对A索引时,它在三个轴上的分量分别为 axis0=1, 代表axis0轴上的第1个索引 axis1=2, 代表axis1轴上的第2个索引 axis2=3, 代表axis3轴上的第3个索引 ...
mean()函数功能:求取均值 经常操作的参数为axis,以m * n矩阵举例: axis 不设置值,对 m*n 个数求均值,返回一个实数 axis = 0:压缩行,对各列求均值,返回 1* n 矩阵 axis =1 :压缩列,对各行求均值,返回 m *1 矩阵 举例: >>> import numpy as np ...
axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(...