1 创建一维数组 首先导入numpy库,然后用np.array函数创建一维数组,具体代码如下: 2 使用嵌套列表创建二维数组 接着应用array函数使用嵌套列表创建二维数组,具体代码如下: import numpy as np # 使用嵌套列表创建二维数组 arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(arr2)
double', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj...
1,使用array创建数组对象 array函数格式: np.array(object,dtype,ndmin) 1. 创建ndarray数组: import numpy as np data1 = [1,3,5,7] #列表 w1 = np.array(data) data2 = (1,3,5,7) #元组 w2 = np.array(data2) data3 = [[1,2,3,4],[5,6,7,8]] w3 = np.array(data3) 1. 2....
a=np.array([2,3,4]) b=np.array([2.,3.,4.]) #二维数组 c=np.array([[1.,2.],[3.,4.]]) d=np.array([[1,2],[3,4]],dtype=complex) print(a,a.dtype) print(b,b.dtype) print(c,c.dtype) print(d,d.dtype) >>>[2 3 4] int64 >>>[2. 3. 4.] float64 >>>[[1...
python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。
V-其他类型的固定内存块(void) 检查数组的数据类型-NumPy数组对象具有一个称为dtype的属性,该属性返回数组的数据类型: import numpy as np arr=np.array([1,2,3,4,5],dtype='S')#设置数组格式为字符串 print(arr) print(arr.dtype) 创建具有定义的数据类型的数组 ...
数组类型可以在创建时显示指定 >>> c = array( [ [1,2], [3,4] ], dtype=complex) >>> c array([[1.+0.j,2.+0.j], [3.+0.j,4.+0.j]]) 通常,数组的元素开始都是未知的,但是它的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这最小化了扩展数组的需要和高昂的运算代价。
注意上面的代码,我们不仅导入了 NumPy,还将 pandas 和 matplotlib 库一并导入了。 创建数组对象 创建ndarray对象有很多种方法,下面我们介绍一些常用的方法。 方法一:使用array函数,通过list创建数组对象。 代码: array1 = np.array([1, 2, 3, 4, 5]) array1 输出: array([1, 2, 3, 4, 5]) 代码: ...
NumPy的ndarray提供了一种方法将一组同构数据(连续的或跨步的)解释为多维数组对象。数据类型或dtype决定数据如何被解释为浮点数、整数、布尔值或我们正在查看的任何其他类型。 让ndarray如此灵活的部分原因是每个数组对象都是一个数据块的分步视图。可能会想知道数组视图arr[::2, ::-1]如何做到不复制任何数据。原因...