importnumpyasnp# 创建一个一维数组arr=np.arange(12)# 生成0到11的一维数组print(f"原数组:{arr}")# 输出原数组# 使用-1自动推断列数reshaped_arr=arr.reshape(3,-1)# 重塑为3行,列数由-1自动推断print(f"重塑后的数组: \n{reshaped_arr}")# 输出重塑后的数组 示例2:自动推断行数 # 使用-1自...
Python的reshape的用法:reshape(1,-1)Python的reshape的⽤法:reshape(1,-1)⽬录 numpy中reshape函数的三种常见相关⽤法 numpy.arange(n).reshape(a, b) 依次⽣成n个⾃然数,并且以a⾏b列的数组形式显⽰ 1.np.arange(16).reshape(2,8) #⽣成16个⾃然数,以2⾏8列的形式显⽰...
importnumpyasnp# 创建二维数组arr=np.array([[1,2,3],[4,5,6],[7,8,9]])# 将二维数组转换为三维数组new_arr=np.reshape(arr,(3,3,1))# 输出结果print(new_arr) Python Copy 输出: [[[1][2][3]][[4][5][6]][[7][8][9]]] Python Copy 示例4:修改数组的存储顺序 importnumpyasnp...
reshape函数还可以用于多维数组的重塑,对于三维数组,可以通过指定三个维度的大小来进行重塑。 array = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) reshaped_array = array.reshape(2, 2, 2) 上述代码将原始的三维数组重塑为2x2x2的形状。 总结一下,reshape函数是NumPy库中用于改变数组形状...
A.reshape(3,-1):表示将数组转换成3行的数组,具体多少列我们不知道,所以参数设为-1。用我们的数学可以计算出是3行8列。 示例: import numpy as np a=np.arange(24) print(a) b=a.reshape(3,-1) print(b) c=a.reshape(-1,8) print(c) ...
在numpy中,shape和reshape()函数的功能都是对于数组的形状进行操作。shape函数可以了解数组的结构,reshape()函数可以对数组的结构进行改变。 shape import numpy as np #设置一个数组 a = np.array([1,2,3,4,5,6,7,8]) print(a.shape) '''结果:(8,)''' ...
1、引入必要的库:我们需要导入numpy库,这是使用reshape函数的前提。 import numpy as np 2、创建数组:我们需要创建一个数组,这将是我们将要重塑的原始数组。 arr = np.array([1, 2, 3, 4, 5, 6]) 3、使用reshape函数:现在,我们可以使用reshape函数来改变数组的形状。reshape函数需要两个参数:新的行数和列...
1.首先随机生成一个4行3列的数组 2.使用reshape 这里有两种使用方法,可以使用np.reshape(r,(-1,1),order='F'),也可以使用r1=r.reshape((-1,1),order='F'),这里选择使用第二种方法。通过示例可以观察不同的order参数效果。 通过例子可以看出来,F是优先对列信息进行操作,而C是优先行信息操作。如果未对...
numpy.arange(a,b,c).reshape(m,n) :将array的维度变为m 行 n列。 np.arange(1,12,2)#间隔2生成数组,范围在1到12之间 # Out: array([ 1, 3, 5, 7, 9, 11]) np.arange(1,12,2).reshape(3,2) ''' Out: array([[ 1, 3], ...
y=np.arange(6).reshape(2,1,3)print(y)y1=y.swapaxes(0,2)# shape 变成 (3,1,2)print("{...