import numpy as np np.random.seed(0) # 先定义一个随机数种子 print(np.random.rand(5)) # "随机"生成5个数 print(np.random.rand(5)) # 再"随机"生成5个数 np.random.seed(0) for i in range(7): print(np.random.random()) # "随机"生成7个数 运行结果: [0.5488135 0.71518937 0.60276338...
np.random.seed(seed) print("test numpy seed: ", seed) for _ in range(cnt): print(np.random.random()) print(np.random.randn(1, 5)) print(np.random.uniform(1, 10, 5)) print('\n') 多次运行以上的test_numpy_random_seed函数,你可以观察到与使用random模块时相似的情形,进一步验证了我们...
而Python中的np.random.seed()函数,正是用来设置这个初始种子值的。 一、np.random.seed()的作用 np.random.seed()函数是NumPy库中的一个函数,用于设置随机数生成器的种子。当我们为np.random.seed()提供一个固定的数值时,随机数生成器会从这个数值开始,生成一系列确定的随机数。这样,每次运行代码时,只要种子...
import numpy as np if __name__ == '__main__': i = 0 while(i<6): if(i<3): np.random.seed(0) print(np.random.randn(1, 5)) else: print(np.random.randn(1, 5)) pass i += 1 i = 0 while(i<2): print(np.random.randn(1, 5)) i += 1 print(np.random.randn(2, 5...
python随机数种子seed() 栗子1 代码语言:javascript 代码运行次数:0 importnumpyasnpimportrandom random.seed(0)np.random.seed(0)print(np.random.rand(2))print(np.random.rand(2)) 结果为: [0.5488135 0.71518937][0.60276338 0.54488318] 再次运行结果为: ...
importnumpyasnp np.random.seed(0)# 先定义一个随机数种子print(np.random.rand(5))# "随机"生成5个数 结果: [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548 ] 这里的rand(5)就是相当于生成五个数据 接着看第二段代码: import numpy as np ...
np.random.seed() n.random.seed([x])函数, x -- 改变随机数生成器的种子seed,x的值变化会影响随机数的产生,但是如果保持同一x不变,name在两次运行产生的随机数都相同,但x如果改变,则两次产生随机数不同。 不加x则前两组随机数没有任何关系,但是加上x之后,则产生相同的随机数,改变x又产生一组新的随机...
np.random.seed(seed)print("test numpy seed: ", seed)for_inrange(cnt):print(np.random.random())print(np.random.randn(1,5))print(np.random.uniform(1,10,5))print('\n') 多次运行以上的test_numpy_random_seed函数,你可以观察到与使用random模块时相似的情形,进一步验证了我们总结的关于随机数种子...
在使用numpy时 ,有时需要用到随机数,并且想让生成的随机数在每次运行时都能得到相同的数组,这时可以使用random.seed(int i)函数,设置随机数种子。 下面用几个测试demo,感受下效果~ (1)测试demo1 import pandas as pd import numpy as np np.random.seed(0) sample = pd.DataFrame(np.random.randn(4, 5)...
np.random.seed(0)# 先定义一个随机数种子print(np.random.rand(5))# "随机"生成5个数 结果: [0.54881350.715189370.602763380.544883180.4236548] 这里的rand(5)就是相当于生成五个数据 接着看第二段代码: importnumpyasnp np.random.seed(0)# 先定义一个随机数种子print(np.random.rand(5))# "随机"生成...