Theabs()function is always going to return a positive number, regardless if the provided argument is a positive or a negative number. All we have to do to convert a positive number to a negative is to prefix the output ofabs()with a minus. main.py number=137negative_number=-abs(number...
import unittestdef add(x, y):return x + yclass TestAdd(unittest.TestCase):def test_add_positive(self):self.assertEqual(add(1, 2), 3)def test_add_negative(self):self.assertEqual(add(-1, -2), -3)def test_add_zero(self):self.assertEqual(add(0, 0), 0)if __name__ == '__m...
AI代码解释 defsign(x):ifx>0:return'positive'elif x<0:return'negative'else:return'zero'forxin[-1,0,1]:print(sign(x))# Prints"negative","zero","positive" 上面呢,就是定义一个 sign 函数,根据输入 x 与 0 的大小关系,返回 positive、negative 或 zero。 函数的形参也可以设置成默认值,例如: ...
c:越大,对于波动大的数据,正常范围放大较大,对于波动较小的数据,正常范围放大较小,默认6.0 side:检测范围,为'positive'时检测突增,为'negative'时检测突降,为'both'时突增突降都检测 min_periods:参考窗中最小个数,小于此个数将会报异常,默认为None,表示每个时间点都得有值 原理: 该模型用于检测突变情况,相...
click.dragTo(x,y)# Moves the mouse cursorwhilethe left button is held down.dragRel(xOffset,yOffset)# Moves the mouse cursor relative to its current positionwhilethe left button is held down.scroll(units)# Simulates the scroll wheel.Apositive argument scrolls up;a negative argument scrolls ...
negative_int = int("-789")print(positive_int, negative_int) # 输出:789 -789 处理错误和异常 当尝试将非数字字符的字符串转换为整数时,Python会抛出 ValueError 异常。因此,处理这种异常是重要的编程实践。示例:try:invalid_str_to_int = int("abc")except ValueError:print("无法转换,字符串中包含...
# create confusion matrix conf_matrix = confusion_matrix(y_test,y_pred) conf_matrix = pd.DataFrame(data = conf_matrix, columns=['negative','positive'], index=['negative','positive']) # plot confusion matrix plt.figure(figsize=(10, 10), facecolor='w', edgecolor='k') sns.set(font_sc...
"肯定预搜索断言:", positive_result) # 输出匹配到的单词列表 print("否定预搜索断言:", negative...
距离计算公式(前半部分为与同类positive之间的距离,后半部分计算与不同类negative的距离。)最终实现效果如下图所示,距离>1.1即可认为相互之间为不同人,即使一个人不同角度也可以被识别为同一人。3.6 人脸识别(特征分类)人脸识别中的人脸验证问题即是验证两张图片是否来自同一个人。主要有以下三种方法,欧氏...
(self, anchor, positive, negative): # anchor: 2D tensor [BATCH_SIZE, DIM] , positive: 2D tensor [BATCH_SIZE, DIM] , negative: 2D tensor [BATCH_SIZE, DIM] , DIM : feature vector dimension (e.g., 128) , BATCH_SIZE : batch size 32 , the input tensors should be normalized to [...