【Python】Python进程池multiprocessing.Pool八个函数对比:map、starmap 1、apply 和 apply_async 一次执行一个任务,但 apply_async 可以异步执行,因而也可以实现并发。 2、map 和 map_async 与 apply 和 apply_async 的区别是可以并发执行任务。 3、starmap 和 starmap_async 与 map 和 map_async 的区别是,st...
starmap_async是Pool类中的一个函数,用于异步地映射多个参数到一个函数上。它的基本用法与map_async类似,但是starmap_async可以接收的参数是一个包含参数元组的可迭代对象。 示例代码 我们先来看一个示例,演示如何使用starmap_async来计算一组数的平方和: importmultiprocessingimporttimedefsquare_and_add(x,y):time...
starmap_async (异步) import multiprocessing import time def func(msg1, msg2): print("msg1:", msg1, "msg2:", msg2) time.sleep(2) print("end") if __name__ == "__main__": pool = multiprocessing.Pool(2) msgs = [(1, 1), (2, 2)] pool.starmap_async(func, msgs) print(...
Pool.starmap_async() Pool.apply_async() 区别:map和starmap的参数都是一个迭代器,但starmap可以接受多个迭代器的list作为参数,也就是说,starmap可以接受更多参数,而map不能。map需要一些特殊操作才可以接受多个参数,如下: from functools import partial from itertools import repeat from multiprocessing import Po...
multiprocessing是python的多进程库,multiprocessing.dummy则是多线程的版本,使用都一样。 其中都有pool池的概念,进程池/线程池有共同的方法,其中方法对比如下 : There are four choices to mapping jobs to process. Here are the differences: Multi-argsConcurrenceBlockingOrdered-resultsmapnoyesyesyesapplyyesnoyesno...
pool = multiprocessing.Pool() pool.apply_async(f, args = (a,), kwds = {b : value}) pool.close()pool.join() (b)如果子进程有返回值,且返回值需要集中处理,则建议采用map方式(子进程活动只允许1个参数): XXX.map(func, iterable, chunksize=None) #将iterable的每个元素作为参数,应用func函数,返...
pool.starmap_async(create_thumbnail, gen_child_args()) 没错,startmap_async的第2个参数是可迭代。因为Thumper实际需要处理数百万个图像,所以这里编写了一个节省内存的生成器对象,该生成器将根据需要创建参数元组,而不是生成一个巨大的列表(为每个图像生成一个元组)。
from multiprocessing.pool import ThreadPool def main(): with (ThreadPool(processes=5) as pool, requests.Session() as session): pool.starmap(fetch, [(session, p) for p in range(25)]) 这里说明2点: 多进程和多线程例子中我都使用了【池】,这是一个好的习惯,因为线(进)程过多会带来额外的开...
starmap_async(func, iterable[, chunksize[, callback[, error_callback]]]), 同上,结果时调用callback。 close(), 停止接受更多的任务。当前pool里的任务都完成后,退出。 terminate(),立刻停止所有worker进程。 join(),等待workder进程退出。 apply_async()和map_async()类返回的类为AsyncResult,它的方法包括...
from multiprocessing import Pool import time def f1(i): time.sleep(0.5) print(i) return i + 100 if __name__ == "__main__": pool = Pool(5) for i in range(1,31): pool.apply(func=f1,args=(i,)) #apply_async def f1(i): ...