使用multiprocessing.Pool获取子进程结果的步骤如下: 创建multiprocessing.Pool对象,并指定进程池的大小。 使用pool.apply_async()方法提交任务给进程池,并获取一个multiprocessing.pool.ApplyResult对象。 使用apply_result.get()方法获取子进程的返回结果。 下面是一个示例代码: importmultiprocessingdefworker(x):returnx*...
getpid())) pool = multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) # Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print('Waiting for all subprocesses done...') pool.close() pool.join() # 调用join之前,一定要先调用close() 函数,...
pool = multiprocessing.Pool(processes=4) results = [] for i in range(10): msg = 'hello world %d' % i result = pool.apply_async(func, (msg, )) results.append(result) print('apply_async: 不堵塞') for i in results: i.wait() # 等待进程函数执行完毕 for i in results: if i.read...
importmultiprocessing# 创建进程池,指定进程数量为4pool=multiprocessing.Pool(4) 1. 2. 3. 4. 步骤2: 提交任务 使用进程池的apply_async()方法可以提交任务,该方法会返回一个AsyncResult对象。 # 定义一个函数,用于在多进程中执行deftask_func(a,b):returna+b# 提交任务到进程池,将任务的返回结果保存在resu...
1 进程池 Pool() 和 map() 2 自定义核数量 3 apply_async 单结果返回 4 apply_async 多结果返回 5 划重点 五 共享内存 shared memory 六 进程锁 Lock 1 不加进程锁 2 加进程锁 七 完整代码示例 八 源码地址 在Python 编程中,多进程(Multiprocessing)是一种提高程序执行效率的重要手段。本文深入解析了多...
import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个...
multiprocessing.Pool类的实例: importtimefrommultiprocessingimportPooldefrun(fn):#fn: 函数参数是数据列表的一个元素time.sleep(1)returnfn*fnif__name__ =="__main__": testFL = [1,2,3,4,5,6]print'shunxu:'#顺序执行(也就是串行执行,单进程)s = time.time()forfnintestFL: ...
importloggingimport osimport timefrom multiprocessing.poolimportPoolfrom timeimportsleepdeff():sleep(1)return'%s finish f_call at %s'%(os.getpid(),time.strftime('%Y-%m-%d %H:%M:%S'))if__name__=='__main__':result=[]withPool(4)aspool:result.append(pool.apply_async(f))result.append(...
Python,multiprocessing 方法/步骤 1 import multiprocessing as mpfrom time import sleepimport osdef work(msg): sleep(2) print(msg) return 'worker return' + msg #为函数调用返回相关值if __name__ == '__main__': pool = mp.Pool(processes = 4) result = [] for i in...
from multiprocessing import Pool pool = Pool(processes) 其中,processes是一个整数,表示进程池中的进程数量。可以根据计算机的CPU核心数来设置进程数量,以充分利用计算资源。 **使用pool函数进行任务并行处理** 一旦创建了进程池,就可以使用pool对象的apply或map方法来并行执行任务。这两个方法的区别在于,apply方法逐个...