这里讨论的axis主要是numpy中定义的axis,pandas基于numpy,保留了numpy对axis的用法。 1、drop删除函数 DataFrame.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace=False,errors='raise')# axis{0 or ‘index’, 1 or ‘columns’}, default 0 drop函数的axis默认为0,表示删除行。 2、me...
axis = 1 ,表示向轴1方向(横向)扩展范围然后,每个扩展范围应用 mean 方法求平均值"为每一列求平均值"。当调用df.mean(axis=0)时,对应图如下: axis = 0 ,表示向轴0方向(竖向)扩展范围然后,每个扩展范围应用 mean 方法求平均值再回头看看在 pandas 中删除方法 drop 。 在官方网站的文档中,明确说明 axis ...
axis仅仅表示这个方法的执行方向 0纵向 1横向 mean(axis=1) 就是每行保留均值 drop(xx,axis=1) 就是每行删除xx
在使用numpy中的np.mean(axis = 1)的时候,计算结果是按照行计算的平均值,如下图所示: 在使用pandas中的pd.drop(axis = 1)时,丢弃的是某一列的值,如下图所示: 同样是axis为1,为什么操作不一样? 问题的理解 以前学习到这里似乎是强行记忆的,axis为0的时候是按照列来进行计算,axis为1是按照行来计算,直到...
numpy.mean(a, axis, dtype, out,keepdims ) mean()函数功能:求取均值 经常操作的参数为axis,以m * n矩阵举例: axis 不设置值,对 m*n 个数求均值,返回一个实数 axis = 0:压缩行,对各列求均值,返回 1* n 矩阵 axis =1 :压缩列,对各行求均值,返回 m *1 矩阵 ...
1. 2. 3. 4. 5. 6. 7. 8. axis = 1,将从左往右(按行)计算。 m1.mean(axis=1) #array([ 2., 7., 12., 17.]) 1. 2. 2. 中位数 np.median 中位数又称中点数,中值。 它是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值。
mean函数的axis默认为None,如果不填写axis,则会按axis=0执行计算每一列的均值。concat函数的axis默认为0,表示纵向合并数据。接下来,我们来看这些函数实现时具体的结果。先导入需要用到的包。首先,我们构造一个DataFrame格式的数据。在drop函数中,axis=0和axis=1分别对应着行和列,axis=0删除了行,...
轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表将name对应的列标签沿着水平的方向依次删掉。
amax(axis=0) 函数: [8 7 9] numpy.ptp() numpy.ptp() 用于计算数组元素中最值之差值,也就是(最大值 - 最小值)。 示例如下: import numpy as np a = np.array([[2,10,20],[80,43,31],[22,43,10]]) print("原数组",a) print("沿着axis 1:",np.ptp(a,1)) ...
axis参数作用方向图示 另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(...