from sklearn.svm import SVC from sklearn.datasets import make_classification # 生成模拟数据 X, y = make_classification(n_samples=1000, n_features=25, n_informative=3) # 创建 SVC 模型作为选择器 svc = SVC(kernel="linear", C=1) rfe = RFE(estimator=svc, n_features_to_select=3) # 选择...
clf = make_pipeline(StandardScaler(),SGDClassifier(max_iter=1000,tol=1e-3)) clf.fit(x,y) print(clf.score(x,y)) print(clf.predict([[-0.8,-1]])) PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.datasets import make_classification from sklear...
y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=5, random_state=1) # summarize the dataset print(X.shape, y.shape) 运行示例,创建数据集,并确保所需的样本和特征数量。(
1.2.2 用sklearn.datasets.make_classification来生成数据 通常用于分类算法 1 2 3 4 sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2,n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None,flip_y=0.01, class_sep=1.0, hypercube=True...
(max_trials=1) classification_node.set_training( enable_stack_ensemble=False, enable_vote_ensemble=False) command_func = command( inputs=dict( automl_output=Input(type="mlflow_model") ), command="ls ${{inputs.automl_output}}", environment="AzureML-sklearn-0.24-ubuntu18.04-py37-cpu:latest...
().tick_bottom()ax.get_yaxis().tick_left()ax.spines['left'].set_position(('outward',10))ax.spines['bottom'].set_position(('outward',10))ax.set_xlim([-6,8])ax.set_ylim([-6,6])returnc0,c1# Generate the datasetX,y=make_classification(n_classes=2,class_sep=2,weights=[0.3, ...
分类(Classification) from sklearn import SomeClassifier from sklearn.linear_model import SomeClassifier from sklearn.ensemble import SomeClassifier 1. 2. 3. 回归(Regression) from sklearn import SomeRegressor from sklearn.linear_model import SomeRegressor ...
这是多类别的分类问题,故使用CTC ( Connectionist temporalclassification) 算法计算损失函数。相关代码如下: AI检测代码解析 def calc_ctc_loss(args): #CTC损失函数 y, yp, ypl, yl = args return K.ctc_batch_cost(y, yp, ypl, yl) ctc_loss = Lambda(calc_ctc_loss, output_shape=(1,), name='...
>>>X, y = make_classification(n_samples=1000, n_features=4, ...n_informative=2, n_redundant=0, ...random_state=0, shuffle=False) >>>clf = RandomForestClassifier(max_depth=2, random_state=0) >>>clf.fit(X, y) RandomForestClassifier(bootstrap=True, class_weight=None, criterion='...
TomekL inks函数中的auto参数控制Tomek' s links中的哪些样本被剔除.默认的ratio= 'auto'’ 移除多 数类的样本,当ratio='ll'时,两个样本均被移除。 fromcollectionsimportCounterfromsklearn.datasetsimportmake_classificationfromimblearn.under_samplingimportTomekLinksX, y = make_classification(n_classes=2, clas...