import pandas as pd import cudf import time # 使用 Pandas 加载数据 start = time.time() df_pandas = pd.read_csv('ecommerce_data.csv') pandas_load_time = time.time() - start # 使用 cuDF.pandas 加载数据 start = time.time() df_cudf = cudf.read_csv('ecommerce_data.csv') cudf_load...
Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。 DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame对象的横向索引或者列名,values用来指定转换...
Python数据透视功能之 pivot_table()介绍 pivot_table pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数...
melt 转置T或者transpose wide_to_long explode(爆炸函数) Pandas 行列转换 导入库 import pandas as pd import numpy as np 1. 2. 技术提升 函数melt melt的主要参数: pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', ignore_index=True, col_level=None) 1. ...
Python pandas.DataFrame.pivot函数方法的使用 pandas.DataFrame.pivot() 是 Pandas 中用于重塑(reshape)数据表结构的函数,它根据列的值将数据 旋转 ,以生成新的列和索引。这在处理多维交叉表或透视表时特别有用。本文主要介绍一下Pandas中pandas.DataFrame.pivot方法的使用。
二、如何使用pivot_table 首先读取数据,数据集是火箭队当家球星James Harden某一赛季比赛数据作为数据集进行讲解。数据地址。 先看一下官方文档中pivot_table的函数体:pandas.pivot_table - pandas 0.21.0 documentation pivot_table(data, values=None, index=None, columns=None,aggfunc='mean', fill_value=None,...
在Pandas中,可以利用pivot_table函数实现该功能。 二、pivot_table函数介绍 使用语法: DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, ...
1. 安装pandas 2. 数据导入 3. 数据预览 4. 数据筛选 5. 数据排序 6. 分组聚合 7. 数据可视化 8. 数据导出 毋庸置疑,pandas仍然是Python数据分析最常用的包,其便捷的函数用法和高效的数据处理方法深受从事数据分析相关工作人员的喜爱,极大提高了数据处理的效率,作为京东的经营分析人员,也经常使用pandas进行数据...
在Python pandas中,可以使用pivot_table()函数进行数据透视表操作。以下是一个简单的示例: import pandas as pd # 创建一个示例数据集 data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'], 'B': ['one', 'one', 'two', 'two', 'one', 'one'], ...
在Pandas 中,实现数据透视表是使用的pivot_table()这个方法,首先还是放个官方文档,防止有同学找不到。 官方文档地址:https://pandas.pydata.org/pan...。 再看下 pivot_table 的语法: pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, ...