接下来,我们创建一个多元线性回归模型,并使用交叉验证评估其性能: # 初始化线性回归模型model=LinearRegression()# 进行5折交叉验证cv_scores=cross_val_score(model,X,y,cv=5)# 输出交叉验证结果print("Cross-validation scores:",cv_scores)print("Mean cross-validation score:",np.mean(cv_scores)) 1. 2...
print("Cross-validation scores:", scores)超参数调整(可选)from sklearn.model_selection import GridSearchCV param_grid = {'fit_intercept': [True, False], 'normalize': [True, False]} grid_search = GridSearchCV(LinearRegression(), param_grid, cv=5, scoring='neg_mean_squared_error')grid_...
基于这样的背景,有人就提出了Cross-Validation方法,也就是交叉验证。 2.Cross-Validation 2.1 LOOCV 首先,我们先介绍LOOCV方法,即(Leave-one-out cross-validation)。像Test set approach一样,LOOCV方法也包含将数据集分为训练集和测试集这一步骤。但是不同的是,我们现在只用一个数据作为测试集,其他的数据都作为训练...
线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning 1fromsklearn.datasetsimportload_boston2fromsklearn.cross_validationimporttrain_test_split3fromsklearn.preprocessingimportStandardScaler4fromsklearn.linear_modelimportLinearRegression, SGDRegressor5fromsklearn.metricsimportr2_score, mean...
='cross validation') plt.legend(loc=2) plt.xlabel('lambda') plt.ylabel('cost') plt.show() l_candidate[np.argmin(cv_cost)] for l in l_candidate: theta = linear_regression_np(X_poly, y, l).x print('test cost(l={}) = {}...
def linearCrossValidation(self, data, k, randomize=True): if randomize: data = list(data) shuffle(data) slices = [data[i::k] for i in range(k)] for i in range(k): validation = slices[i] train = [ data for s in slices if s is not validation for data in s ] train = np....
from sklearn.cross_validation import train_test_split 更新为下面的代码 ''' from sklearn.model_selection import train_test_split #建立训练数据和测试数据 X_train , X_test , y_train , y_test = train_test_split(exam_X , exam_y ,
X_train,X_test,Y_train,Y_test= cross_validation.train_test_split(X,Y,test_size=0.15,random_state=1) from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(data[column_names[0:43]], data[column_names[43]], test_size=0.25, random_state=33) #4。从sklearn调入线性回归,数据拟合,测试集数据预测 ...
我们将通过 K 次交叉验证来预估得到的学习模型在未知数据上的表现。这就意味着我们将创建并评估 K 个模型并预估这 K 个模型的平均误差。辅助函数 cross_validation_split()、rmse_metric() 和 evaluate_algorithm() 用于求导根均方差以及评估每一个生成的模型。