可以使用numpy和pandas生成一个简单的合成数据集。 importnumpyasnpimportpandasaspdfromsklearn.datasetsimportmake_regression# 创建合成数据X,y=make_regression(n_samples=100,n_features=10,noise=0.1)# 将自变量转换为 DataFramedf_X=pd.DataFrame(X,columns=[f'feature_{i}'foriinrange(X.shape[1])])df_...
w, b = Cal(datax, datay, length) w1, b1 = NumpyRegression(datax, datay) DrawPicture(datax, datay, w, b, 'r') #绘制自写预测函数的图 DrawPicture(datax, datay, w1, b1, 'b') #绘制np库中函数预测图像 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16....
1.多项式拟合(Polynomial Fitting):多项式拟合是一种基本的拟合方法,它使用多项式函数来逼近数据。多项式拟合可以通过最小二乘法(Least Squares Method)或使用多项式拟合函数(如`numpy.polyfit`)来实现。 import numpy as np import matplotlib.pyplot as plt # 示例散点数据 x_data = np.array([1, 2, 3, 4, ...
# 定义线性回归模型deflinear_regression(x):returnw * x + b # 定义损失函数defloss_fn(y_true, y_pred):returntf.reduce_mean(tf.square(y_true - y_pred)) # 设置优化器optimizer = tf.optimizers.SGD(learning_rate=0.01) # 定义训练函数deftrain_step(features, labels...
在《机器学习 线性回归(Machine Learning Linear Regression)》一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法。现在,让我们来实践一下吧。 先来回顾一下用最小二乘法求解参数的公式:。 (其中:,,) 再来看一下随机梯度下降法(Stochastic
在这些情况下,我们将使用多元线性回归模型(MLR,Multiple Linear Regression)。回归方程与简单回归方程基本相同,只是有更多变量: Y=b0+b1X1+b2X2+⋯+bnXn Python 中的线性回归 在Python 中进行线性回归主要有两种方式:使用 Statsmodels 和 scikit-learn。 Statsmodels 中的线性回归 Statsmodels 是一个 “提供许多不...
方法八:sklearn.linear_model.LinearRegression( )这是大多数机器学习工程师和数据科学家使用的典型方法。当然,对于现实世界中的问题,它可能被交叉验证和正则化的算法如Lasso回归和Ridge回归所取代,而不被过多使用,但是这些高级函数的核心正是这个模型本身。八种方法效率比拼 作为一名数据科学家,应该一直寻找准确且...
方法 8: sklearn.linear_model.LinearRegression( )这个方法经常被大部分机器学习工程师与数据科学家使用。然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。详细描述参考:以上方法的...
详细描述参考:https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29 方法8: sklearn.linear_model.LinearRegression( ) 这个方法经常被大部分机器学习工程师与数据科学家使用。然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替...
scikit-learn提供了一些方法来使线性回归模型正则化。其中之一是岭回归(Ridge Regression,RR,也叫Tikhonov regularization),通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法。岭回归增加L2范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和): ...