classsklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,verbose=0,random_state=None,copy_x=True,algorithm='auto') 对于我们来说,常常只需要: sklearn.cluster.KMeans(n_clusters=K) 1.n_cluster:聚类个数(即K),默认值是8。 2.init:初始化类中心的方法(...
1 Kmeans模型理论 1.1 K-均值算法(K-means)算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用一个没有标签的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不...
import matplotlib.pyplot as plt x,y = make_blobs(n_samples=1000,n_features=4,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.4],random_state=10) k_means = KMeans(n_clusters=3, random_state=10) k_means.fit(x) y_predict = k_means.predict(x) plt.scatt...
kelbow_visualizer(KMeans(random_state=4), x, k=(2, 10)) 可以自动选出k值(k=4),而且画出的图也很好看。 上面就是K-means算法的基本内容,由于算法比较简单,内容不多,而且sklearn也带有Kmeans的工具包(上面那个例子里就是)。总的来说虽然K-means算法比较简单,但是用途还是比较广泛的。 最近事情比较多,...
来看一下 MiniBatchKMeans的python实现: 官网链接、案例一则链接 主函数 : 代码语言:javascript 代码运行次数:0 运行 AI代码解释 MiniBatchKMeans(n_clusters=8, init=’k-means++’, max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10,...
precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto') 1. 2. 3. n_clusters:用于指定聚类的簇数 init:用于指定初始的簇中心的设置方法,如果为’k-means++’,则表示设置的初始簇中心相距较远;如果为’random’则表示从数据集中随机挑选k个样本作为初始簇...
[10, 2], [10, 4], [10, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X) >>> kmeans.labels_ array([1, 1, 1, 0, 0, 0], dtype=int32) >>> kmeans.predict([[0, 0], [12, 3]]) array([1, 0], dtype=int32) >>> kmeans.cluster...
3.2k-means聚类的第二种方式 进行变量分布的正态转换--用于客户细分 # 进行变量分布的正态转换import numpy as npfrom sklearn import preprocessingquantile_transformer = \preprocessing.QuantileTransformer(output_distribution='normal', random_state=0) # 正态转换df_trans = quantile_transformer.fit_transfor...
一、KMeans算法简介 KMeans是一种无监督学习的聚类算法,它的核心思想是将n个观测值划分为k个聚类,使得每个观测值属于离其最近的均值(聚类中心)对应的聚类,从而完成数据的分类。KMeans算法具有简单、高效的特点,在数据挖掘、图像处理、机器学习等领域有广泛应用。 二、sklearn中的KMeans 在Python的sklearn库中,KMea...
在Python的sklearn库中,random_state是一个常见的参数,经常出现在各种机器学习模型的初始化函数中。这个参数控制了模型训练过程中的随机性,对于模型的可重复性和结果的一致性至关重要。 随机性的来源 首先,我们需要了解机器学习模型中的随机性是从哪里来的。在机器学习中,随机性可能来源于数据集的划分、特征选择、模...